O. Barambones, J. M. Gonzalez De Durana, E. Kremers
{"title":"基于神经网络的风力机控制风速估计","authors":"O. Barambones, J. M. Gonzalez De Durana, E. Kremers","doi":"10.1109/MELCON.2010.5476008","DOIUrl":null,"url":null,"abstract":"Variable speed wind generation systems are more attractive than fixed-speed systems because of the more efficient energy production improved power quality, and improved dynamic performance during grid disturbances. In this sense, to implement maximum wind power extraction, most controller designs of the variable-speed wind turbine generators employ anemometers to measure wind speed in order to derive the desired optimal shaft speed for adjusting the generator speed. In this paper it is proposed a new Neural Network Based Wind Speed Estimator for a wind turbine control. The design uses an feedforward Artificial Neural Network (ANN) to implement a rotor speed estimator, and simulated results show that the proposed observer provides high-performance dynamic characteristics.","PeriodicalId":256057,"journal":{"name":"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A neural network based wind speed estimator for a wind turbine control\",\"authors\":\"O. Barambones, J. M. Gonzalez De Durana, E. Kremers\",\"doi\":\"10.1109/MELCON.2010.5476008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variable speed wind generation systems are more attractive than fixed-speed systems because of the more efficient energy production improved power quality, and improved dynamic performance during grid disturbances. In this sense, to implement maximum wind power extraction, most controller designs of the variable-speed wind turbine generators employ anemometers to measure wind speed in order to derive the desired optimal shaft speed for adjusting the generator speed. In this paper it is proposed a new Neural Network Based Wind Speed Estimator for a wind turbine control. The design uses an feedforward Artificial Neural Network (ANN) to implement a rotor speed estimator, and simulated results show that the proposed observer provides high-performance dynamic characteristics.\",\"PeriodicalId\":256057,\"journal\":{\"name\":\"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELCON.2010.5476008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2010.5476008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A neural network based wind speed estimator for a wind turbine control
Variable speed wind generation systems are more attractive than fixed-speed systems because of the more efficient energy production improved power quality, and improved dynamic performance during grid disturbances. In this sense, to implement maximum wind power extraction, most controller designs of the variable-speed wind turbine generators employ anemometers to measure wind speed in order to derive the desired optimal shaft speed for adjusting the generator speed. In this paper it is proposed a new Neural Network Based Wind Speed Estimator for a wind turbine control. The design uses an feedforward Artificial Neural Network (ANN) to implement a rotor speed estimator, and simulated results show that the proposed observer provides high-performance dynamic characteristics.