基于神经网络的风力机控制风速估计

O. Barambones, J. M. Gonzalez De Durana, E. Kremers
{"title":"基于神经网络的风力机控制风速估计","authors":"O. Barambones, J. M. Gonzalez De Durana, E. Kremers","doi":"10.1109/MELCON.2010.5476008","DOIUrl":null,"url":null,"abstract":"Variable speed wind generation systems are more attractive than fixed-speed systems because of the more efficient energy production improved power quality, and improved dynamic performance during grid disturbances. In this sense, to implement maximum wind power extraction, most controller designs of the variable-speed wind turbine generators employ anemometers to measure wind speed in order to derive the desired optimal shaft speed for adjusting the generator speed. In this paper it is proposed a new Neural Network Based Wind Speed Estimator for a wind turbine control. The design uses an feedforward Artificial Neural Network (ANN) to implement a rotor speed estimator, and simulated results show that the proposed observer provides high-performance dynamic characteristics.","PeriodicalId":256057,"journal":{"name":"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A neural network based wind speed estimator for a wind turbine control\",\"authors\":\"O. Barambones, J. M. Gonzalez De Durana, E. Kremers\",\"doi\":\"10.1109/MELCON.2010.5476008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variable speed wind generation systems are more attractive than fixed-speed systems because of the more efficient energy production improved power quality, and improved dynamic performance during grid disturbances. In this sense, to implement maximum wind power extraction, most controller designs of the variable-speed wind turbine generators employ anemometers to measure wind speed in order to derive the desired optimal shaft speed for adjusting the generator speed. In this paper it is proposed a new Neural Network Based Wind Speed Estimator for a wind turbine control. The design uses an feedforward Artificial Neural Network (ANN) to implement a rotor speed estimator, and simulated results show that the proposed observer provides high-performance dynamic characteristics.\",\"PeriodicalId\":256057,\"journal\":{\"name\":\"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELCON.2010.5476008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2010.5476008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

变速风力发电系统比定速风力发电系统更有吸引力,因为变速风力发电系统的能源生产效率更高,电能质量更好,并且在电网扰动时动态性能更好。从这个意义上说,为了实现最大的风力提取,大多数变速风力发电机组的控制器设计都采用风速计来测量风速,从而得到所需的最优轴转速来调节发电机转速。本文提出了一种新的基于神经网络的风力机控制风速估计方法。该设计采用前馈人工神经网络(ANN)实现转子转速估计器,仿真结果表明该观测器具有良好的动态特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network based wind speed estimator for a wind turbine control
Variable speed wind generation systems are more attractive than fixed-speed systems because of the more efficient energy production improved power quality, and improved dynamic performance during grid disturbances. In this sense, to implement maximum wind power extraction, most controller designs of the variable-speed wind turbine generators employ anemometers to measure wind speed in order to derive the desired optimal shaft speed for adjusting the generator speed. In this paper it is proposed a new Neural Network Based Wind Speed Estimator for a wind turbine control. The design uses an feedforward Artificial Neural Network (ANN) to implement a rotor speed estimator, and simulated results show that the proposed observer provides high-performance dynamic characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信