B. Askarian, F. Tabei, Grace Anne Tipton, J. Chong
{"title":"基于智能手机的牙周病检测方法","authors":"B. Askarian, F. Tabei, Grace Anne Tipton, J. Chong","doi":"10.1109/HI-POCT45284.2019.8962844","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel periodontal disease detection method using smartphones, image processing, and machine learning techniques. Periodontal disease is an inflammatory disease known to be the main cause of tooth loss. Here, a CIELAB color space is adopted for feature extraction and the support vector machine (SVM) is applied for distinguishing healthy gum from diseased gum. A gadget is designed to block ambient light and eliminate refraction effect as well. We recruited 30 subjects consisting of 15 gum-diseased and 15 healthy subjects. Experimental results show that our proposed method detects periodontal infection with 94.3% accuracy, 92.6% sensitivity, and 93% specificity, respectively.","PeriodicalId":269346,"journal":{"name":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Smartphone-Based Method for Detecting Periodontal Disease\",\"authors\":\"B. Askarian, F. Tabei, Grace Anne Tipton, J. Chong\",\"doi\":\"10.1109/HI-POCT45284.2019.8962844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel periodontal disease detection method using smartphones, image processing, and machine learning techniques. Periodontal disease is an inflammatory disease known to be the main cause of tooth loss. Here, a CIELAB color space is adopted for feature extraction and the support vector machine (SVM) is applied for distinguishing healthy gum from diseased gum. A gadget is designed to block ambient light and eliminate refraction effect as well. We recruited 30 subjects consisting of 15 gum-diseased and 15 healthy subjects. Experimental results show that our proposed method detects periodontal infection with 94.3% accuracy, 92.6% sensitivity, and 93% specificity, respectively.\",\"PeriodicalId\":269346,\"journal\":{\"name\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HI-POCT45284.2019.8962844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HI-POCT45284.2019.8962844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Smartphone-Based Method for Detecting Periodontal Disease
In this paper, we propose a novel periodontal disease detection method using smartphones, image processing, and machine learning techniques. Periodontal disease is an inflammatory disease known to be the main cause of tooth loss. Here, a CIELAB color space is adopted for feature extraction and the support vector machine (SVM) is applied for distinguishing healthy gum from diseased gum. A gadget is designed to block ambient light and eliminate refraction effect as well. We recruited 30 subjects consisting of 15 gum-diseased and 15 healthy subjects. Experimental results show that our proposed method detects periodontal infection with 94.3% accuracy, 92.6% sensitivity, and 93% specificity, respectively.