{"title":"基于HPA的瑞利衰落信道SWIPT系统容量研究","authors":"Nizar Khalfet, I. Krikidis","doi":"10.1109/ITW48936.2021.9611500","DOIUrl":null,"url":null,"abstract":"In this paper, we study the fundamental limits of simultaneous information and power transfer over a Rayleigh fading channel in the presence of high-power amplifier (HPA) nonlinearity. In particular, a three-party communication system is considered, where a transmitter aims simultaneously conveying information to an information receiver and delivering energy to an energy harvester receiver. We study the information-energy capacity region and the associated input distribution under: i) average-power, peak-power (PP) constraints at the transmitter, b) HPA nonlinearity at the transmitter, and c) nonlinearity of the energy harvesting circuit at the energy receiver. By extending Smith’s mathematical framework [1], we show that the optimal input distribution under those constraints is discrete with a finite number of mass points. Moreover, we derive a closed-form expression of the capacity-achieving distribution for the low PP regime, where there is no trade-off between information and energy transfer. Finally, we show that HPA significantly reduces the information energy capacity region.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Capacity of SWIPT Systems over Rayleigh-Fading Channels with HPA\",\"authors\":\"Nizar Khalfet, I. Krikidis\",\"doi\":\"10.1109/ITW48936.2021.9611500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the fundamental limits of simultaneous information and power transfer over a Rayleigh fading channel in the presence of high-power amplifier (HPA) nonlinearity. In particular, a three-party communication system is considered, where a transmitter aims simultaneously conveying information to an information receiver and delivering energy to an energy harvester receiver. We study the information-energy capacity region and the associated input distribution under: i) average-power, peak-power (PP) constraints at the transmitter, b) HPA nonlinearity at the transmitter, and c) nonlinearity of the energy harvesting circuit at the energy receiver. By extending Smith’s mathematical framework [1], we show that the optimal input distribution under those constraints is discrete with a finite number of mass points. Moreover, we derive a closed-form expression of the capacity-achieving distribution for the low PP regime, where there is no trade-off between information and energy transfer. Finally, we show that HPA significantly reduces the information energy capacity region.\",\"PeriodicalId\":325229,\"journal\":{\"name\":\"2021 IEEE Information Theory Workshop (ITW)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW48936.2021.9611500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Capacity of SWIPT Systems over Rayleigh-Fading Channels with HPA
In this paper, we study the fundamental limits of simultaneous information and power transfer over a Rayleigh fading channel in the presence of high-power amplifier (HPA) nonlinearity. In particular, a three-party communication system is considered, where a transmitter aims simultaneously conveying information to an information receiver and delivering energy to an energy harvester receiver. We study the information-energy capacity region and the associated input distribution under: i) average-power, peak-power (PP) constraints at the transmitter, b) HPA nonlinearity at the transmitter, and c) nonlinearity of the energy harvesting circuit at the energy receiver. By extending Smith’s mathematical framework [1], we show that the optimal input distribution under those constraints is discrete with a finite number of mass points. Moreover, we derive a closed-form expression of the capacity-achieving distribution for the low PP regime, where there is no trade-off between information and energy transfer. Finally, we show that HPA significantly reduces the information energy capacity region.