复合材料结构在旋翼飞机上的应用

C. Rousseau, A. Dobyns, Pierre J. A. Minguet
{"title":"复合材料结构在旋翼飞机上的应用","authors":"C. Rousseau, A. Dobyns, Pierre J. A. Minguet","doi":"10.1115/imece1999-0147","DOIUrl":null,"url":null,"abstract":"The rotorcraft industry is a roughly $5B/year segment of aerospace, with a 4:1 military to civil sales ratio, that delivers on the order of 5000–6000 aircraft per year. The earliest rotorcraft had composite primary structure: bonded wooden main and tail rotor blades. The first advanced composite main rotor (M/R) and tail rotor blades (bonded glass/epoxy D-spars, honeycomb afterbodies, and fabric skins) went into production in the early ’70’s. Thus, the rotorcraft industry has been designing and certifying nonredundant bonded primary composite structure for over 25 years. More recent design innovations for rotor components include 4-inch-thick solid molded bearingless M/R hubs and yokes (joining the blades to the mast) and a 1.5-inch-thick complex curvature fiber placed carbon grip for the Bell/Boeing MV-22 Osprey tiltrotor. With roughly 50% of its empty weight consisting of glass and carbon reinforced composites, the V-22 probably has the highest weight-percentage of composites of any manned military production aircraft. This degree of composites usage will likely be surpased by the Sikorsky/Boeing RAH-66 Comanche scout/attack helicopter when it goes into production. As with the V-22 and RAH-66, composites are also seeing increased usage in civilian rotorcraft airframes. Specifically, the Bell 427 and MD Helicopter MD900 Explorer light twin helicopters feature all-composite fuselages, while the Bell-Agusta BA609 civil tiltrotor will have carbon epoxy wings, fuselage and empennage much like the V-22. In the future, composite structural applications will become more widespread as designers gain insight and confidence. Repair, maintenance and support of these structures will become the focus of much engineering R&D effort.","PeriodicalId":240121,"journal":{"name":"Advances in Aerospace Materials and Structures","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Past, Present and Future Composite Structures Applications in Rotorcraft\",\"authors\":\"C. Rousseau, A. Dobyns, Pierre J. A. Minguet\",\"doi\":\"10.1115/imece1999-0147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rotorcraft industry is a roughly $5B/year segment of aerospace, with a 4:1 military to civil sales ratio, that delivers on the order of 5000–6000 aircraft per year. The earliest rotorcraft had composite primary structure: bonded wooden main and tail rotor blades. The first advanced composite main rotor (M/R) and tail rotor blades (bonded glass/epoxy D-spars, honeycomb afterbodies, and fabric skins) went into production in the early ’70’s. Thus, the rotorcraft industry has been designing and certifying nonredundant bonded primary composite structure for over 25 years. More recent design innovations for rotor components include 4-inch-thick solid molded bearingless M/R hubs and yokes (joining the blades to the mast) and a 1.5-inch-thick complex curvature fiber placed carbon grip for the Bell/Boeing MV-22 Osprey tiltrotor. With roughly 50% of its empty weight consisting of glass and carbon reinforced composites, the V-22 probably has the highest weight-percentage of composites of any manned military production aircraft. This degree of composites usage will likely be surpased by the Sikorsky/Boeing RAH-66 Comanche scout/attack helicopter when it goes into production. As with the V-22 and RAH-66, composites are also seeing increased usage in civilian rotorcraft airframes. Specifically, the Bell 427 and MD Helicopter MD900 Explorer light twin helicopters feature all-composite fuselages, while the Bell-Agusta BA609 civil tiltrotor will have carbon epoxy wings, fuselage and empennage much like the V-22. In the future, composite structural applications will become more widespread as designers gain insight and confidence. Repair, maintenance and support of these structures will become the focus of much engineering R&D effort.\",\"PeriodicalId\":240121,\"journal\":{\"name\":\"Advances in Aerospace Materials and Structures\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Aerospace Materials and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1999-0147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Aerospace Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-0147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

旋翼飞机工业是一个大约50亿美元/年的航空航天领域,军民销售比例为4:1,每年交付5000-6000架飞机的订单。最早的旋翼机采用复合材料为主结构:木制主桨叶和尾桨叶结合。第一种先进的复合材料主旋翼(M/R)和尾桨叶片(粘合玻璃/环氧树脂d型梁,蜂窝后体和织物外壳)在70年代初投入生产。因此,旋翼飞机行业已经设计和认证非冗余粘合初级复合材料结构超过25年。旋翼部件的最新设计创新包括4英寸厚的无轴承实心模制M/R轮毂和轭(将叶片连接到桅杆上),以及贝尔/波音MV-22鱼鹰倾转旋翼机1.5英寸厚的复杂曲率纤维放置碳握把。大约50%的空重由玻璃和碳增强复合材料组成,V-22可能是任何载人军用生产飞机中复合材料重量百分比最高的。当西科斯基/波音RAH-66科曼奇侦察/攻击直升机投入生产时,这种复合材料的使用程度可能会被超越。与V-22和RAH-66一样,复合材料在民用旋翼飞机机身上的使用也在增加。具体来说,贝尔427和MD直升机MD900“探索者”轻型双直升机采用全复合材料机身,而贝尔-阿古斯塔BA609民用倾转旋翼将采用碳环氧树脂机翼、机身和尾翼,与V-22非常相似。在未来,随着设计师的洞察力和信心的增强,复合材料结构的应用将变得更加广泛。这些结构的维修、维护和支持将成为许多工程研发工作的重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Past, Present and Future Composite Structures Applications in Rotorcraft
The rotorcraft industry is a roughly $5B/year segment of aerospace, with a 4:1 military to civil sales ratio, that delivers on the order of 5000–6000 aircraft per year. The earliest rotorcraft had composite primary structure: bonded wooden main and tail rotor blades. The first advanced composite main rotor (M/R) and tail rotor blades (bonded glass/epoxy D-spars, honeycomb afterbodies, and fabric skins) went into production in the early ’70’s. Thus, the rotorcraft industry has been designing and certifying nonredundant bonded primary composite structure for over 25 years. More recent design innovations for rotor components include 4-inch-thick solid molded bearingless M/R hubs and yokes (joining the blades to the mast) and a 1.5-inch-thick complex curvature fiber placed carbon grip for the Bell/Boeing MV-22 Osprey tiltrotor. With roughly 50% of its empty weight consisting of glass and carbon reinforced composites, the V-22 probably has the highest weight-percentage of composites of any manned military production aircraft. This degree of composites usage will likely be surpased by the Sikorsky/Boeing RAH-66 Comanche scout/attack helicopter when it goes into production. As with the V-22 and RAH-66, composites are also seeing increased usage in civilian rotorcraft airframes. Specifically, the Bell 427 and MD Helicopter MD900 Explorer light twin helicopters feature all-composite fuselages, while the Bell-Agusta BA609 civil tiltrotor will have carbon epoxy wings, fuselage and empennage much like the V-22. In the future, composite structural applications will become more widespread as designers gain insight and confidence. Repair, maintenance and support of these structures will become the focus of much engineering R&D effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信