{"title":"ArkFS:一种基于对象存储的分布式文件系统,用于HPC环境下的数据归档","authors":"Kyu-Jin Cho, Injae Kang, Jin-Soo Kim","doi":"10.1109/IPDPS54959.2023.00038","DOIUrl":null,"url":null,"abstract":"As the burst buffer is being widely deployed in the HPC (High-Performance Computing) systems, the distributed file system layer is taking the role of campaign storage where scalability and cost-effectiveness are of paramount importance. However, the centralized metadata management in the distributed file system layer poses a scalability challenge. The object storage system has emerged as an alternative thanks to its simplified interface and scale-out architecture. Despite this, the HPC communities are used to working with the POSIX interface to organize their files into a global directory hierarchy and control access through access control lists.In this paper, we present ArkFS, a near-POSIX compliant and scalable distributed file system implemented on top of the object storage system. ArkFS achieves high scalability without any centralized metadata servers. Instead, ArkFS lets each client manage a portion of the file system metadata on a per-directory basis. ArkFS supports any distributed object storage system such as Ceph RADOS or S3-compatible system with an appropriate API translation module. Our experimental results indicate that ArkFS shows significant performance improvement under metadata-intensive workloads while showing near-linear scalability. We also demonstrate that ArkFS is suitable for handling the bursty I/O traffic coming from the burst buffer layer to archive cold data.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ArkFS: A Distributed File System on Object Storage for Archiving Data in HPC Environment\",\"authors\":\"Kyu-Jin Cho, Injae Kang, Jin-Soo Kim\",\"doi\":\"10.1109/IPDPS54959.2023.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the burst buffer is being widely deployed in the HPC (High-Performance Computing) systems, the distributed file system layer is taking the role of campaign storage where scalability and cost-effectiveness are of paramount importance. However, the centralized metadata management in the distributed file system layer poses a scalability challenge. The object storage system has emerged as an alternative thanks to its simplified interface and scale-out architecture. Despite this, the HPC communities are used to working with the POSIX interface to organize their files into a global directory hierarchy and control access through access control lists.In this paper, we present ArkFS, a near-POSIX compliant and scalable distributed file system implemented on top of the object storage system. ArkFS achieves high scalability without any centralized metadata servers. Instead, ArkFS lets each client manage a portion of the file system metadata on a per-directory basis. ArkFS supports any distributed object storage system such as Ceph RADOS or S3-compatible system with an appropriate API translation module. Our experimental results indicate that ArkFS shows significant performance improvement under metadata-intensive workloads while showing near-linear scalability. We also demonstrate that ArkFS is suitable for handling the bursty I/O traffic coming from the burst buffer layer to archive cold data.\",\"PeriodicalId\":343684,\"journal\":{\"name\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS54959.2023.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ArkFS: A Distributed File System on Object Storage for Archiving Data in HPC Environment
As the burst buffer is being widely deployed in the HPC (High-Performance Computing) systems, the distributed file system layer is taking the role of campaign storage where scalability and cost-effectiveness are of paramount importance. However, the centralized metadata management in the distributed file system layer poses a scalability challenge. The object storage system has emerged as an alternative thanks to its simplified interface and scale-out architecture. Despite this, the HPC communities are used to working with the POSIX interface to organize their files into a global directory hierarchy and control access through access control lists.In this paper, we present ArkFS, a near-POSIX compliant and scalable distributed file system implemented on top of the object storage system. ArkFS achieves high scalability without any centralized metadata servers. Instead, ArkFS lets each client manage a portion of the file system metadata on a per-directory basis. ArkFS supports any distributed object storage system such as Ceph RADOS or S3-compatible system with an appropriate API translation module. Our experimental results indicate that ArkFS shows significant performance improvement under metadata-intensive workloads while showing near-linear scalability. We also demonstrate that ArkFS is suitable for handling the bursty I/O traffic coming from the burst buffer layer to archive cold data.