压缩感知中信号重构的自适应近点算法

Kaizhan Huai, Yejun Li, Mingfang Ni, Zhanke Yu, Xiaoguo Wang
{"title":"压缩感知中信号重构的自适应近点算法","authors":"Kaizhan Huai, Yejun Li, Mingfang Ni, Zhanke Yu, Xiaoguo Wang","doi":"10.1109/SIPROCESS.2016.7888290","DOIUrl":null,"url":null,"abstract":"Compressive sensing (CS) is a new framework for simulations sensing and compressive. How to reconstruct a sparse signal from limited measurements is the key problem in CS. For solving the reconstruction problem of a sparse signal, we proposed a self-adaptive proximal point algorithm (PPA). This algorithm can handle the sparse signal reconstruction by solving a substituted problem — ℓ1 problem. At last, the numerical results shows that the proposed method is more effective compared with the compressive sampling matching pursuit (CoSaMP).","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A self-adaptive proximal point algorithm for signal reconstruction in compressive sensing\",\"authors\":\"Kaizhan Huai, Yejun Li, Mingfang Ni, Zhanke Yu, Xiaoguo Wang\",\"doi\":\"10.1109/SIPROCESS.2016.7888290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing (CS) is a new framework for simulations sensing and compressive. How to reconstruct a sparse signal from limited measurements is the key problem in CS. For solving the reconstruction problem of a sparse signal, we proposed a self-adaptive proximal point algorithm (PPA). This algorithm can handle the sparse signal reconstruction by solving a substituted problem — ℓ1 problem. At last, the numerical results shows that the proposed method is more effective compared with the compressive sampling matching pursuit (CoSaMP).\",\"PeriodicalId\":142802,\"journal\":{\"name\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPROCESS.2016.7888290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

压缩感知(CS)是一种新的仿真感知和压缩框架。如何从有限的测量值中重构稀疏信号是信号控制中的关键问题。针对稀疏信号的重构问题,提出一种自适应近点算法(PPA)。该算法通过求解一个替换问题来处理稀疏信号重构。最后,数值结果表明,该方法比压缩采样匹配追踪(CoSaMP)方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A self-adaptive proximal point algorithm for signal reconstruction in compressive sensing
Compressive sensing (CS) is a new framework for simulations sensing and compressive. How to reconstruct a sparse signal from limited measurements is the key problem in CS. For solving the reconstruction problem of a sparse signal, we proposed a self-adaptive proximal point algorithm (PPA). This algorithm can handle the sparse signal reconstruction by solving a substituted problem — ℓ1 problem. At last, the numerical results shows that the proposed method is more effective compared with the compressive sampling matching pursuit (CoSaMP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信