基于改进差分进化算法的分数阶自抗扰控制器

Henghui Liang, Wei Yu, Ruipei Chen, Ying Luo
{"title":"基于改进差分进化算法的分数阶自抗扰控制器","authors":"Henghui Liang, Wei Yu, Ruipei Chen, Ying Luo","doi":"10.1115/detc2021-68264","DOIUrl":null,"url":null,"abstract":"\n Although the active disturbance rejection controller can obtain good control performance without relying on specific model information, it targets integer-order systems. Fractional-order characteristics are commonly existed in practical systems. For fractional-order systems, it is more targeted to use the order information of the fractional-order model to design the active disturbance rejection controller, so as to obtain better control performance. A fractional active disturbance rejection controller composed of FOESO and FOPID (IDE-FOPID-FOESO) is proposed in this paper. The fractional-order extended state observer (FOESO) is designed based on the order information and the nonlinear state error feedback is replaced by the fractional-order PID controller (FOPID) whose parameters are obtained by the improved differential evolution algorithm (IDE). For IDE algorithm, the basis vector is randomly selected from the optimal individual population in the mutation strategy, and the scaling factor and cross-probability factor are adaptively adjusted according to the information of the successfully mutated individual in the search process to improve the exploration and mining capabilities of the algorithm. The simulation results show that the IDE algorithm can obtain the better parameters of FOPID faster compared with traditional DE algorithm and the IDE-FOPID-FOESO controller can be better applied to fractional-order systems with better control performance.","PeriodicalId":221388,"journal":{"name":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fractional Active Disturbance Rejection Controller Based on Improved Differential Evolution Algorithm\",\"authors\":\"Henghui Liang, Wei Yu, Ruipei Chen, Ying Luo\",\"doi\":\"10.1115/detc2021-68264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Although the active disturbance rejection controller can obtain good control performance without relying on specific model information, it targets integer-order systems. Fractional-order characteristics are commonly existed in practical systems. For fractional-order systems, it is more targeted to use the order information of the fractional-order model to design the active disturbance rejection controller, so as to obtain better control performance. A fractional active disturbance rejection controller composed of FOESO and FOPID (IDE-FOPID-FOESO) is proposed in this paper. The fractional-order extended state observer (FOESO) is designed based on the order information and the nonlinear state error feedback is replaced by the fractional-order PID controller (FOPID) whose parameters are obtained by the improved differential evolution algorithm (IDE). For IDE algorithm, the basis vector is randomly selected from the optimal individual population in the mutation strategy, and the scaling factor and cross-probability factor are adaptively adjusted according to the information of the successfully mutated individual in the search process to improve the exploration and mining capabilities of the algorithm. The simulation results show that the IDE algorithm can obtain the better parameters of FOPID faster compared with traditional DE algorithm and the IDE-FOPID-FOESO controller can be better applied to fractional-order systems with better control performance.\",\"PeriodicalId\":221388,\"journal\":{\"name\":\"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-68264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-68264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自抗扰控制器虽然可以在不依赖特定模型信息的情况下获得良好的控制性能,但它针对的是整阶系统。分数阶特征在实际系统中普遍存在。对于分数阶系统,更有针对性地利用分数阶模型的阶数信息来设计自抗扰控制器,从而获得更好的控制性能。提出了一种由FOESO和FOPID组成的分数阶自抗扰控制器(IDE-FOPID-FOESO)。基于阶数信息设计了分数阶扩展状态观测器(FOESO),用分数阶PID控制器(FOPID)代替非线性状态误差反馈,其参数由改进的差分进化算法(IDE)获得。IDE算法在变异策略中从最优个体群体中随机选取基向量,在搜索过程中根据变异成功个体的信息自适应调整比例因子和交叉概率因子,提高算法的探索和挖掘能力。仿真结果表明,与传统DE算法相比,IDE算法可以更快地获得更好的FOPID参数,IDE-FOPID- foeso控制器可以更好地应用于分数阶系统,具有更好的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Active Disturbance Rejection Controller Based on Improved Differential Evolution Algorithm
Although the active disturbance rejection controller can obtain good control performance without relying on specific model information, it targets integer-order systems. Fractional-order characteristics are commonly existed in practical systems. For fractional-order systems, it is more targeted to use the order information of the fractional-order model to design the active disturbance rejection controller, so as to obtain better control performance. A fractional active disturbance rejection controller composed of FOESO and FOPID (IDE-FOPID-FOESO) is proposed in this paper. The fractional-order extended state observer (FOESO) is designed based on the order information and the nonlinear state error feedback is replaced by the fractional-order PID controller (FOPID) whose parameters are obtained by the improved differential evolution algorithm (IDE). For IDE algorithm, the basis vector is randomly selected from the optimal individual population in the mutation strategy, and the scaling factor and cross-probability factor are adaptively adjusted according to the information of the successfully mutated individual in the search process to improve the exploration and mining capabilities of the algorithm. The simulation results show that the IDE algorithm can obtain the better parameters of FOPID faster compared with traditional DE algorithm and the IDE-FOPID-FOESO controller can be better applied to fractional-order systems with better control performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信