{"title":"手写体阿拉伯词离线识别的预处理和特征提取方法比较","authors":"H. E. Abed, V. Märgner","doi":"10.1109/ICDAR.2007.85","DOIUrl":null,"url":null,"abstract":"Preprocessing and feature extraction are very important steps in automatic cursive handwritten word recognition. Based on an offline recognition system for Arabic handwritten words which uses a semi-continuous 1-dimensional Hidden Markov Model recognizer, different preprocessing combined with different feature sets are presented. The dependencies of the feature sets from preprocessing steps are discussed and their performances are compared using the IFN/ENIT-database of handwritten Arabic words. As the lower and upper baseline of each word are part of the ground truth of the database, the dependency of the feature set from the accuracy of the estimated baseline is evaluated.","PeriodicalId":294655,"journal":{"name":"IEEE International Conference on Document Analysis and Recognition","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Comparison of Different Preprocessing and Feature Extraction Methods for Offline Recognition of Handwritten ArabicWords\",\"authors\":\"H. E. Abed, V. Märgner\",\"doi\":\"10.1109/ICDAR.2007.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preprocessing and feature extraction are very important steps in automatic cursive handwritten word recognition. Based on an offline recognition system for Arabic handwritten words which uses a semi-continuous 1-dimensional Hidden Markov Model recognizer, different preprocessing combined with different feature sets are presented. The dependencies of the feature sets from preprocessing steps are discussed and their performances are compared using the IFN/ENIT-database of handwritten Arabic words. As the lower and upper baseline of each word are part of the ground truth of the database, the dependency of the feature set from the accuracy of the estimated baseline is evaluated.\",\"PeriodicalId\":294655,\"journal\":{\"name\":\"IEEE International Conference on Document Analysis and Recognition\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2007.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2007.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Different Preprocessing and Feature Extraction Methods for Offline Recognition of Handwritten ArabicWords
Preprocessing and feature extraction are very important steps in automatic cursive handwritten word recognition. Based on an offline recognition system for Arabic handwritten words which uses a semi-continuous 1-dimensional Hidden Markov Model recognizer, different preprocessing combined with different feature sets are presented. The dependencies of the feature sets from preprocessing steps are discussed and their performances are compared using the IFN/ENIT-database of handwritten Arabic words. As the lower and upper baseline of each word are part of the ground truth of the database, the dependency of the feature set from the accuracy of the estimated baseline is evaluated.