{"title":"微波辅助合成水净化用纳米材料的原理与优点","authors":"T. Saleh, S. Majeed, A. Nayak, B. Bhushan","doi":"10.4018/978-1-5225-2136-5.CH003","DOIUrl":null,"url":null,"abstract":"Nanomaterials are the pillars of nanoscience and nanotechnology and to realize their full potential in various potential applications, synthetic methodologies/routes need to be established that are simple, fast and cost-effective. Wet-chemical approaches for nanomaterial synthesis have proven to be among the most versatile and effective routes to finely tailor nanocrystals with varying compositional and architectural complexity. Microwave-assisted solution route represents an efficient wet-chemical approach for the synthesis of nanomaterials that offers additional advantages, such as rapid volumetric heating, high reaction rates, size and shape control by tuning reaction parameters, and energy efficiency. In addition, the homogenous heating of the reactants in microwave synthesis minimizes thermal gradients and provides uniform nucleation and growth conditions that leads to the formation of nanomaterials with uniform size distribution. This chapter deals with the basics of microwave chemistry and its applications towards the synthesis of nanomaterials for catalytic applications.","PeriodicalId":145165,"journal":{"name":"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Principles and Advantages of Microwave-Assisted Methods for the Synthesis of Nanomaterials for Water Purification\",\"authors\":\"T. Saleh, S. Majeed, A. Nayak, B. Bhushan\",\"doi\":\"10.4018/978-1-5225-2136-5.CH003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanomaterials are the pillars of nanoscience and nanotechnology and to realize their full potential in various potential applications, synthetic methodologies/routes need to be established that are simple, fast and cost-effective. Wet-chemical approaches for nanomaterial synthesis have proven to be among the most versatile and effective routes to finely tailor nanocrystals with varying compositional and architectural complexity. Microwave-assisted solution route represents an efficient wet-chemical approach for the synthesis of nanomaterials that offers additional advantages, such as rapid volumetric heating, high reaction rates, size and shape control by tuning reaction parameters, and energy efficiency. In addition, the homogenous heating of the reactants in microwave synthesis minimizes thermal gradients and provides uniform nucleation and growth conditions that leads to the formation of nanomaterials with uniform size distribution. This chapter deals with the basics of microwave chemistry and its applications towards the synthesis of nanomaterials for catalytic applications.\",\"PeriodicalId\":145165,\"journal\":{\"name\":\"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-2136-5.CH003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-2136-5.CH003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Principles and Advantages of Microwave-Assisted Methods for the Synthesis of Nanomaterials for Water Purification
Nanomaterials are the pillars of nanoscience and nanotechnology and to realize their full potential in various potential applications, synthetic methodologies/routes need to be established that are simple, fast and cost-effective. Wet-chemical approaches for nanomaterial synthesis have proven to be among the most versatile and effective routes to finely tailor nanocrystals with varying compositional and architectural complexity. Microwave-assisted solution route represents an efficient wet-chemical approach for the synthesis of nanomaterials that offers additional advantages, such as rapid volumetric heating, high reaction rates, size and shape control by tuning reaction parameters, and energy efficiency. In addition, the homogenous heating of the reactants in microwave synthesis minimizes thermal gradients and provides uniform nucleation and growth conditions that leads to the formation of nanomaterials with uniform size distribution. This chapter deals with the basics of microwave chemistry and its applications towards the synthesis of nanomaterials for catalytic applications.