J. Peters, S. Howington, O. Eslinger, J. Ballard, J. Fairley, R. Goodson, Virginia Carpenter
{"title":"热红外对抗和IED探测系统的特征评估:在操作计算环境中的大面积模拟","authors":"J. Peters, S. Howington, O. Eslinger, J. Ballard, J. Fairley, R. Goodson, Virginia Carpenter","doi":"10.1109/HPCMP-UGC.2009.53","DOIUrl":null,"url":null,"abstract":"The countermine test bed (CTB) and accompanying tools provide a means to optimize thermal infrared sensor systems and automated target recognition algorithms. The CTB has been validated through a series of studies conducted since 2006. During that time, the capability of the CTB has been vastly expanded, particularly in regards to the size of the domain that can be modeled. The CTB consists of four independent models that are coupled through file transfers. Optimization of the system involves a scheduling problem whereby the processors are assigned to individual sub-models in accordance with their run times. The ground model and the ray caster dominate computations, with the other sub-models operating virtually as background processes.","PeriodicalId":268639,"journal":{"name":"2009 DoD High Performance Computing Modernization Program Users Group Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Signature Evaluation for Thermal Infrared Countermine and IED Detection Systems: Large-Area Simulations in an Operational Computing Environment\",\"authors\":\"J. Peters, S. Howington, O. Eslinger, J. Ballard, J. Fairley, R. Goodson, Virginia Carpenter\",\"doi\":\"10.1109/HPCMP-UGC.2009.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The countermine test bed (CTB) and accompanying tools provide a means to optimize thermal infrared sensor systems and automated target recognition algorithms. The CTB has been validated through a series of studies conducted since 2006. During that time, the capability of the CTB has been vastly expanded, particularly in regards to the size of the domain that can be modeled. The CTB consists of four independent models that are coupled through file transfers. Optimization of the system involves a scheduling problem whereby the processors are assigned to individual sub-models in accordance with their run times. The ground model and the ray caster dominate computations, with the other sub-models operating virtually as background processes.\",\"PeriodicalId\":268639,\"journal\":{\"name\":\"2009 DoD High Performance Computing Modernization Program Users Group Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 DoD High Performance Computing Modernization Program Users Group Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCMP-UGC.2009.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 DoD High Performance Computing Modernization Program Users Group Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCMP-UGC.2009.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Signature Evaluation for Thermal Infrared Countermine and IED Detection Systems: Large-Area Simulations in an Operational Computing Environment
The countermine test bed (CTB) and accompanying tools provide a means to optimize thermal infrared sensor systems and automated target recognition algorithms. The CTB has been validated through a series of studies conducted since 2006. During that time, the capability of the CTB has been vastly expanded, particularly in regards to the size of the domain that can be modeled. The CTB consists of four independent models that are coupled through file transfers. Optimization of the system involves a scheduling problem whereby the processors are assigned to individual sub-models in accordance with their run times. The ground model and the ray caster dominate computations, with the other sub-models operating virtually as background processes.