弱自对偶lrc的一些性质和构造

Deep Mukhopadhyay, K. Hansda, S. Bagchi
{"title":"弱自对偶lrc的一些性质和构造","authors":"Deep Mukhopadhyay, K. Hansda, S. Bagchi","doi":"10.1109/SPCOM55316.2022.9840828","DOIUrl":null,"url":null,"abstract":"A code is called $(n,\\ k,\\ r,\\ t)_{a}$ locally repairable code (LRC) if all the symbols (coordinates) of each codeword can be retrieved from at least t disjoint sets of at most r other symbols called repair sets (recover sets). In this work, we go through the properties of $(n,\\ k,\\ r,\\ t)_{a}$ weakly self dual LRCs. We show that there is no weakly self dual LRC for $t\\geq 2$. Moreover, we remark that the existence of $(n,\\ k,\\ r,\\ t)_{a}$ weakly self dual LRC implies that the availability t of each symbol is strictly 1. Further, we furnish some constructions, via parity check matrix, of weakly self dual LRCs over different fields, some of which are also optimal against the Singleton-like bound. Finally, we also provide the existential criteria for $(n,\\ k,\\ r,\\ t,\\ x)_{a}$ weakly self dual LRCs having intersecting repair sets and propose a necessary condition for binary $(n,\\ k,\\ r,\\ t,\\ x)_{a}$ LRCs to be weakly self dual.","PeriodicalId":246982,"journal":{"name":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","volume":"46 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Properties and Constructions of Weakly Self Dual LRCs\",\"authors\":\"Deep Mukhopadhyay, K. Hansda, S. Bagchi\",\"doi\":\"10.1109/SPCOM55316.2022.9840828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A code is called $(n,\\\\ k,\\\\ r,\\\\ t)_{a}$ locally repairable code (LRC) if all the symbols (coordinates) of each codeword can be retrieved from at least t disjoint sets of at most r other symbols called repair sets (recover sets). In this work, we go through the properties of $(n,\\\\ k,\\\\ r,\\\\ t)_{a}$ weakly self dual LRCs. We show that there is no weakly self dual LRC for $t\\\\geq 2$. Moreover, we remark that the existence of $(n,\\\\ k,\\\\ r,\\\\ t)_{a}$ weakly self dual LRC implies that the availability t of each symbol is strictly 1. Further, we furnish some constructions, via parity check matrix, of weakly self dual LRCs over different fields, some of which are also optimal against the Singleton-like bound. Finally, we also provide the existential criteria for $(n,\\\\ k,\\\\ r,\\\\ t,\\\\ x)_{a}$ weakly self dual LRCs having intersecting repair sets and propose a necessary condition for binary $(n,\\\\ k,\\\\ r,\\\\ t,\\\\ x)_{a}$ LRCs to be weakly self dual.\",\"PeriodicalId\":246982,\"journal\":{\"name\":\"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)\",\"volume\":\"46 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPCOM55316.2022.9840828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM55316.2022.9840828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如果每个码字的所有符号(坐标)可以从至少t个不相交的集(最多r个称为修复集(恢复集)的其他符号)中检索到,则称为$(n,\ k,\ r,\ t)_{a}$局部可修复码(LRC)。在这项工作中,我们讨论了$(n,\ k,\ r,\ t)_{a}$弱自对偶lrc的性质。证明了$t\geq 2$不存在弱自对偶LRC。此外,我们注意到$(n,\ k,\ r,\ t)_{a}$弱自对偶LRC的存在意味着每个符号的可用性t严格为1。进一步,我们通过奇偶校验矩阵给出了不同域上弱自对偶lrc的一些构造,其中一些构造对于类单态界也是最优的。最后,我们还给出了具有相交修复集的$(n,\ k,\ r,\ t,\ x)_{a}$弱自对偶lrc的存在判据,并给出了二元$(n,\ k,\ r,\ t,\ x)_{a}$ lrc是弱自对偶的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Properties and Constructions of Weakly Self Dual LRCs
A code is called $(n,\ k,\ r,\ t)_{a}$ locally repairable code (LRC) if all the symbols (coordinates) of each codeword can be retrieved from at least t disjoint sets of at most r other symbols called repair sets (recover sets). In this work, we go through the properties of $(n,\ k,\ r,\ t)_{a}$ weakly self dual LRCs. We show that there is no weakly self dual LRC for $t\geq 2$. Moreover, we remark that the existence of $(n,\ k,\ r,\ t)_{a}$ weakly self dual LRC implies that the availability t of each symbol is strictly 1. Further, we furnish some constructions, via parity check matrix, of weakly self dual LRCs over different fields, some of which are also optimal against the Singleton-like bound. Finally, we also provide the existential criteria for $(n,\ k,\ r,\ t,\ x)_{a}$ weakly self dual LRCs having intersecting repair sets and propose a necessary condition for binary $(n,\ k,\ r,\ t,\ x)_{a}$ LRCs to be weakly self dual.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信