汉语术语语义分析的统计方法

Dongfeng Cai, Na Ye, Guiping Zhang, Yan Song
{"title":"汉语术语语义分析的统计方法","authors":"Dongfeng Cai, Na Ye, Guiping Zhang, Yan Song","doi":"10.1109/ICSC.2014.47","DOIUrl":null,"url":null,"abstract":"We propose a statistical semantic analysis method for Chinese terms. We use words, part-of-speech (POS) tags, word distances, word contexts and the first sememe of a word in HowNet as features to train a Support Vector Machine (SVM) model for analyzing term semantics. The model is used to identify dependencies embedded inside a term. A Conditional Random Field (CRF) model is used afterwards to incorporate the dependencies and experimental results showed the effectiveness and validity of our approach.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Statistical Approach to Semantic Analysis for Chinese Terms\",\"authors\":\"Dongfeng Cai, Na Ye, Guiping Zhang, Yan Song\",\"doi\":\"10.1109/ICSC.2014.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a statistical semantic analysis method for Chinese terms. We use words, part-of-speech (POS) tags, word distances, word contexts and the first sememe of a word in HowNet as features to train a Support Vector Machine (SVM) model for analyzing term semantics. The model is used to identify dependencies embedded inside a term. A Conditional Random Field (CRF) model is used afterwards to incorporate the dependencies and experimental results showed the effectiveness and validity of our approach.\",\"PeriodicalId\":175352,\"journal\":{\"name\":\"2014 IEEE International Conference on Semantic Computing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2014.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种汉语术语统计语义分析方法。我们在HowNet中使用单词、词性标签、单词距离、单词上下文和单词的第一个义素作为特征来训练支持向量机(SVM)模型来分析术语语义。该模型用于识别嵌入在术语中的依赖关系。然后使用条件随机场(CRF)模型来合并依赖关系,实验结果表明了我们的方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Statistical Approach to Semantic Analysis for Chinese Terms
We propose a statistical semantic analysis method for Chinese terms. We use words, part-of-speech (POS) tags, word distances, word contexts and the first sememe of a word in HowNet as features to train a Support Vector Machine (SVM) model for analyzing term semantics. The model is used to identify dependencies embedded inside a term. A Conditional Random Field (CRF) model is used afterwards to incorporate the dependencies and experimental results showed the effectiveness and validity of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信