V.G.Vinod Vydiswaran, Grace Ganzel, Bryan Romas, D. Yu, Amy M. Austin, N. Bhomia, S. Chan, S. Hall, Van Le, Aaron Miller, Olawunmi Oduyebo, Aulia Song, Radhika Sondhi, D. Teng, H. Tseng, Kim Vuong, Stephanie Zimmerman
{"title":"迈向文本处理管道以识别与不良药物事件相关的推文:密歇根大学@ SMM4H 2019任务1","authors":"V.G.Vinod Vydiswaran, Grace Ganzel, Bryan Romas, D. Yu, Amy M. Austin, N. Bhomia, S. Chan, S. Hall, Van Le, Aaron Miller, Olawunmi Oduyebo, Aulia Song, Radhika Sondhi, D. Teng, H. Tseng, Kim Vuong, Stephanie Zimmerman","doi":"10.18653/v1/W19-3217","DOIUrl":null,"url":null,"abstract":"We participated in Task 1 of the Social Media Mining for Health Applications (SMM4H) 2019 Shared Tasks on detecting mentions of adverse drug events (ADEs) in tweets. Our approach relied on a text processing pipeline for tweets, and training traditional machine learning and deep learning models. Our submitted runs performed above average for the task.","PeriodicalId":265570,"journal":{"name":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","volume":"594 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Towards Text Processing Pipelines to Identify Adverse Drug Events-related Tweets: University of Michigan @ SMM4H 2019 Task 1\",\"authors\":\"V.G.Vinod Vydiswaran, Grace Ganzel, Bryan Romas, D. Yu, Amy M. Austin, N. Bhomia, S. Chan, S. Hall, Van Le, Aaron Miller, Olawunmi Oduyebo, Aulia Song, Radhika Sondhi, D. Teng, H. Tseng, Kim Vuong, Stephanie Zimmerman\",\"doi\":\"10.18653/v1/W19-3217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We participated in Task 1 of the Social Media Mining for Health Applications (SMM4H) 2019 Shared Tasks on detecting mentions of adverse drug events (ADEs) in tweets. Our approach relied on a text processing pipeline for tweets, and training traditional machine learning and deep learning models. Our submitted runs performed above average for the task.\",\"PeriodicalId\":265570,\"journal\":{\"name\":\"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task\",\"volume\":\"594 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-3217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Text Processing Pipelines to Identify Adverse Drug Events-related Tweets: University of Michigan @ SMM4H 2019 Task 1
We participated in Task 1 of the Social Media Mining for Health Applications (SMM4H) 2019 Shared Tasks on detecting mentions of adverse drug events (ADEs) in tweets. Our approach relied on a text processing pipeline for tweets, and training traditional machine learning and deep learning models. Our submitted runs performed above average for the task.