基于模型的特征约简数据挖掘入侵检测

J. Goyal
{"title":"基于模型的特征约简数据挖掘入侵检测","authors":"J. Goyal","doi":"10.36227/techrxiv.18461786.v1","DOIUrl":null,"url":null,"abstract":"The research paper involves model based Intrusion detection through data mining techniques using the NSL-KDD dataset. The approach involves building of classification model and hybrid model which are created using classification techniques and, combining both classification and clustering techniques respectively. Classification model can detect known attacks effectively whereas hybrid models can detect unknown or new attacks also. The comparison of the results of different models is done over different performance evaluation parameters.","PeriodicalId":231371,"journal":{"name":"International Journal of Engineering and Computer Science","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Based Intrusion Detection using Data Mining Techniques with Feature Reduction\",\"authors\":\"J. Goyal\",\"doi\":\"10.36227/techrxiv.18461786.v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research paper involves model based Intrusion detection through data mining techniques using the NSL-KDD dataset. The approach involves building of classification model and hybrid model which are created using classification techniques and, combining both classification and clustering techniques respectively. Classification model can detect known attacks effectively whereas hybrid models can detect unknown or new attacks also. The comparison of the results of different models is done over different performance evaluation parameters.\",\"PeriodicalId\":231371,\"journal\":{\"name\":\"International Journal of Engineering and Computer Science\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36227/techrxiv.18461786.v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36227/techrxiv.18461786.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了利用NSL-KDD数据集,通过数据挖掘技术进行基于模型的入侵检测。该方法包括建立分类模型和混合模型,分别使用分类技术和聚类技术建立分类模型和混合模型。分类模型可以有效检测已知的攻击,混合模型也可以检测未知的或新的攻击。在不同的性能评价参数下,对不同模型的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Based Intrusion Detection using Data Mining Techniques with Feature Reduction
The research paper involves model based Intrusion detection through data mining techniques using the NSL-KDD dataset. The approach involves building of classification model and hybrid model which are created using classification techniques and, combining both classification and clustering techniques respectively. Classification model can detect known attacks effectively whereas hybrid models can detect unknown or new attacks also. The comparison of the results of different models is done over different performance evaluation parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信