随机检测外来因素

Manfred Minimair
{"title":"随机检测外来因素","authors":"Manfred Minimair","doi":"10.1145/2608628.2608631","DOIUrl":null,"url":null,"abstract":"A projection operator of a system of parametric polynomials is a polynomial in the coefficients of the system that vanishes if the system has a common root. The projection operator is a multiple of the resultant of the system, and the factors of the projection operator that are not contained in the resultant are called extraneous factors. The main contribution of this work is to provide a randomized algorithm to check whether a factor is extraneous, which is an important task in applications. A lower bound for the success probability is determined which can be set arbitrarily close to one. This algorithm uses certain matrices rather than Gröbner bases and seems to be the first algorithm of this kind for this task.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Randomized detection of extraneous factors\",\"authors\":\"Manfred Minimair\",\"doi\":\"10.1145/2608628.2608631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A projection operator of a system of parametric polynomials is a polynomial in the coefficients of the system that vanishes if the system has a common root. The projection operator is a multiple of the resultant of the system, and the factors of the projection operator that are not contained in the resultant are called extraneous factors. The main contribution of this work is to provide a randomized algorithm to check whether a factor is extraneous, which is an important task in applications. A lower bound for the success probability is determined which can be set arbitrarily close to one. This algorithm uses certain matrices rather than Gröbner bases and seems to be the first algorithm of this kind for this task.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"237 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

参数多项式系统的投影算子是系统系数中的一个多项式,如果系统有公根则该多项式消失。投影算子是系统的结果的一个倍数,而结果中不包含的投影算子的因子称为外因子。本工作的主要贡献是提供了一种随机算法来检查一个因素是否无关,这是应用中的一项重要任务。确定成功概率的下界,该下界可以任意设置为接近1。该算法使用特定的矩阵而不是Gröbner基,并且似乎是此类任务的第一个算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized detection of extraneous factors
A projection operator of a system of parametric polynomials is a polynomial in the coefficients of the system that vanishes if the system has a common root. The projection operator is a multiple of the resultant of the system, and the factors of the projection operator that are not contained in the resultant are called extraneous factors. The main contribution of this work is to provide a randomized algorithm to check whether a factor is extraneous, which is an important task in applications. A lower bound for the success probability is determined which can be set arbitrarily close to one. This algorithm uses certain matrices rather than Gröbner bases and seems to be the first algorithm of this kind for this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信