二元系统解的复杂性:非奇异解的情况

R. Lebreton, E. Mehrabi, É. Schost
{"title":"二元系统解的复杂性:非奇异解的情况","authors":"R. Lebreton, E. Mehrabi, É. Schost","doi":"10.1145/2465506.2465950","DOIUrl":null,"url":null,"abstract":"We give an algorithm for solving bivariate polynomial systems over either <i>k</i>(<i>T</i>)[<i>X,Y</i>] or <i>Q</i>[<i>X,Y</i>] using a combination of lifting and modular composition techniques.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"On the complexity of solving bivariate systems: the case of non-singular solutions\",\"authors\":\"R. Lebreton, E. Mehrabi, É. Schost\",\"doi\":\"10.1145/2465506.2465950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an algorithm for solving bivariate polynomial systems over either <i>k</i>(<i>T</i>)[<i>X,Y</i>] or <i>Q</i>[<i>X,Y</i>] using a combination of lifting and modular composition techniques.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465506.2465950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465506.2465950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们给出了一个算法来解决二元多项式系统在k(T)[X,Y]或Q[X,Y]使用提升和模组合技术的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the complexity of solving bivariate systems: the case of non-singular solutions
We give an algorithm for solving bivariate polynomial systems over either k(T)[X,Y] or Q[X,Y] using a combination of lifting and modular composition techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信