使用机器学习和可视动作监测困倦驾驶员

V. Pavani, M. N. Swetha, Y. Prasanthi, K. Kavya, M. Pavithra
{"title":"使用机器学习和可视动作监测困倦驾驶员","authors":"V. Pavani, M. N. Swetha, Y. Prasanthi, K. Kavya, M. Pavithra","doi":"10.1109/ICEARS53579.2022.9751890","DOIUrl":null,"url":null,"abstract":"Driver sleepiness has become a leading cause of traffic accidents and fatalities in recent years. The goal of this research is to find a way to identify driver fatigue and provide early warning so that people can be saved. Using image processing techniques, a camera captures video of the driver's face and measures the status of their eye and mouth opening ratios and delivers a warning if necessary. This is a real-time system. There are a variety of methods for determining whether a driver is drowsy, but this one is absolutely non-intrusive and has no effect on the driving in any way. The per-closure value of the eye is taken into account for the identification of drowsiness. Consequently, the driver is classified as sleepy if the closing of the eye exceeds a predetermined threshold. Offline testing of various machine learning algorithms has also been conducted. Support Vector Machine-based classification has a sensibility of 95.58 percent and a specificity of 100 percent.","PeriodicalId":252961,"journal":{"name":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Drowsy Driver Monitoring Using Machine Learning and Visible Actions\",\"authors\":\"V. Pavani, M. N. Swetha, Y. Prasanthi, K. Kavya, M. Pavithra\",\"doi\":\"10.1109/ICEARS53579.2022.9751890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driver sleepiness has become a leading cause of traffic accidents and fatalities in recent years. The goal of this research is to find a way to identify driver fatigue and provide early warning so that people can be saved. Using image processing techniques, a camera captures video of the driver's face and measures the status of their eye and mouth opening ratios and delivers a warning if necessary. This is a real-time system. There are a variety of methods for determining whether a driver is drowsy, but this one is absolutely non-intrusive and has no effect on the driving in any way. The per-closure value of the eye is taken into account for the identification of drowsiness. Consequently, the driver is classified as sleepy if the closing of the eye exceeds a predetermined threshold. Offline testing of various machine learning algorithms has also been conducted. Support Vector Machine-based classification has a sensibility of 95.58 percent and a specificity of 100 percent.\",\"PeriodicalId\":252961,\"journal\":{\"name\":\"2022 International Conference on Electronics and Renewable Systems (ICEARS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Electronics and Renewable Systems (ICEARS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEARS53579.2022.9751890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEARS53579.2022.9751890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,司机打瞌睡已成为交通事故和死亡的主要原因。这项研究的目的是找到一种方法来识别驾驶员疲劳,并提供早期预警,从而挽救人们的生命。通过图像处理技术,摄像头可以捕捉到司机面部的视频,并测量他们的眼睛和嘴巴张开的比例,并在必要时发出警告。这是一个实时系统。有很多方法可以确定司机是否昏昏欲睡,但这种方法绝对是非侵入性的,对驾驶没有任何影响。眼睛的每次闭合值被考虑在睡意的识别中。因此,如果司机闭上的眼睛超过预定的阈值,就会被归类为困倦。还进行了各种机器学习算法的离线测试。基于支持向量机的分类灵敏度为95.58%,特异性为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drowsy Driver Monitoring Using Machine Learning and Visible Actions
Driver sleepiness has become a leading cause of traffic accidents and fatalities in recent years. The goal of this research is to find a way to identify driver fatigue and provide early warning so that people can be saved. Using image processing techniques, a camera captures video of the driver's face and measures the status of their eye and mouth opening ratios and delivers a warning if necessary. This is a real-time system. There are a variety of methods for determining whether a driver is drowsy, but this one is absolutely non-intrusive and has no effect on the driving in any way. The per-closure value of the eye is taken into account for the identification of drowsiness. Consequently, the driver is classified as sleepy if the closing of the eye exceeds a predetermined threshold. Offline testing of various machine learning algorithms has also been conducted. Support Vector Machine-based classification has a sensibility of 95.58 percent and a specificity of 100 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信