{"title":"语素切分和形态学学习的无监督模型","authors":"Mathias Creutz, K. Lagus","doi":"10.1145/1187415.1187418","DOIUrl":null,"url":null,"abstract":"We present a model family called Morfessor for the unsupervised induction of a simple morphology from raw text data. The model is formulated in a probabilistic maximum a posteriori framework. Morfessor can handle highly inflecting and compounding languages where words can consist of lengthy sequences of morphemes. A lexicon of word segments, called morphs, is induced from the data. The lexicon stores information about both the usage and form of the morphs. Several instances of the model are evaluated quantitatively in a morpheme segmentation task on different sized sets of Finnish as well as English data. Morfessor is shown to perform very well compared to a widely known benchmark algorithm, in particular on Finnish data.","PeriodicalId":412532,"journal":{"name":"ACM Trans. Speech Lang. Process.","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"407","resultStr":"{\"title\":\"Unsupervised models for morpheme segmentation and morphology learning\",\"authors\":\"Mathias Creutz, K. Lagus\",\"doi\":\"10.1145/1187415.1187418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a model family called Morfessor for the unsupervised induction of a simple morphology from raw text data. The model is formulated in a probabilistic maximum a posteriori framework. Morfessor can handle highly inflecting and compounding languages where words can consist of lengthy sequences of morphemes. A lexicon of word segments, called morphs, is induced from the data. The lexicon stores information about both the usage and form of the morphs. Several instances of the model are evaluated quantitatively in a morpheme segmentation task on different sized sets of Finnish as well as English data. Morfessor is shown to perform very well compared to a widely known benchmark algorithm, in particular on Finnish data.\",\"PeriodicalId\":412532,\"journal\":{\"name\":\"ACM Trans. Speech Lang. Process.\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"407\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Speech Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1187415.1187418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Speech Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1187415.1187418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised models for morpheme segmentation and morphology learning
We present a model family called Morfessor for the unsupervised induction of a simple morphology from raw text data. The model is formulated in a probabilistic maximum a posteriori framework. Morfessor can handle highly inflecting and compounding languages where words can consist of lengthy sequences of morphemes. A lexicon of word segments, called morphs, is induced from the data. The lexicon stores information about both the usage and form of the morphs. Several instances of the model are evaluated quantitatively in a morpheme segmentation task on different sized sets of Finnish as well as English data. Morfessor is shown to perform very well compared to a widely known benchmark algorithm, in particular on Finnish data.