基于STBC的MIMO-OFDM系统自适应滤波信道估计技术比较研究

Mei Li, Xiang Wang, Kun Zhang
{"title":"基于STBC的MIMO-OFDM系统自适应滤波信道估计技术比较研究","authors":"Mei Li, Xiang Wang, Kun Zhang","doi":"10.1109/ICMLC.2014.7009691","DOIUrl":null,"url":null,"abstract":"In this paper, we will analyze the Least Mean Square(LMS) and Recursive Least Square(RLS) algorithms. Then, we apply these two algorithms to a Multiple-input Multiple-output(MIMO-OFDM) system based on Space-Time Block Coding(STBC), and do some simulations on these two algorithms. From the simulation, it is found that the convergence speed of the RLS algorithm is faster than LMS algorithm, i.e., the performance of RLS is better than LMS algorithm.","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Comparative study of adaptive filter channel estimation technique in MIMO-OFDM system based on STBC\",\"authors\":\"Mei Li, Xiang Wang, Kun Zhang\",\"doi\":\"10.1109/ICMLC.2014.7009691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will analyze the Least Mean Square(LMS) and Recursive Least Square(RLS) algorithms. Then, we apply these two algorithms to a Multiple-input Multiple-output(MIMO-OFDM) system based on Space-Time Block Coding(STBC), and do some simulations on these two algorithms. From the simulation, it is found that the convergence speed of the RLS algorithm is faster than LMS algorithm, i.e., the performance of RLS is better than LMS algorithm.\",\"PeriodicalId\":335296,\"journal\":{\"name\":\"2014 International Conference on Machine Learning and Cybernetics\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2014.7009691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们将分析最小均方(LMS)和递归最小二乘(RLS)算法。然后,我们将这两种算法应用于基于空时分组编码(STBC)的多输入多输出(MIMO-OFDM)系统,并对这两种算法进行了仿真。仿真结果表明,RLS算法的收敛速度比LMS算法快,即RLS算法的性能优于LMS算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative study of adaptive filter channel estimation technique in MIMO-OFDM system based on STBC
In this paper, we will analyze the Least Mean Square(LMS) and Recursive Least Square(RLS) algorithms. Then, we apply these two algorithms to a Multiple-input Multiple-output(MIMO-OFDM) system based on Space-Time Block Coding(STBC), and do some simulations on these two algorithms. From the simulation, it is found that the convergence speed of the RLS algorithm is faster than LMS algorithm, i.e., the performance of RLS is better than LMS algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信