对角型的Nichols代数

I. Angiono
{"title":"对角型的Nichols代数","authors":"I. Angiono","doi":"10.1515/CRELLE-2011-0008","DOIUrl":null,"url":null,"abstract":"We give an explicit and essentially minimal list of defining relations of a Nichols algebra of diagonal type with finite root system. This list contains the well-known quantum Serre relations but also many new variations. A conjecture by Andruskiewitsch and Schneider states that any finite-dimensional pointed Hopf algebra over an algebraically closed field of characteristic zero is generated as an algebra by its group-like and skew-primitive elements. As an application of our main result, we prove the conjecture when the group of group-like elements is abelian.","PeriodicalId":432644,"journal":{"name":"Hopf Algebras and Root Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Nichols algebras of diagonal type\",\"authors\":\"I. Angiono\",\"doi\":\"10.1515/CRELLE-2011-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an explicit and essentially minimal list of defining relations of a Nichols algebra of diagonal type with finite root system. This list contains the well-known quantum Serre relations but also many new variations. A conjecture by Andruskiewitsch and Schneider states that any finite-dimensional pointed Hopf algebra over an algebraically closed field of characteristic zero is generated as an algebra by its group-like and skew-primitive elements. As an application of our main result, we prove the conjecture when the group of group-like elements is abelian.\",\"PeriodicalId\":432644,\"journal\":{\"name\":\"Hopf Algebras and Root Systems\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hopf Algebras and Root Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/CRELLE-2011-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hopf Algebras and Root Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/CRELLE-2011-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

给出了有限根对角线型尼克尔斯代数的定义关系的显式最小表。这个列表包含了众所周知的量子Serre关系,但也有许多新的变体。Andruskiewitsch和Schneider的一个猜想指出,在特征为0的代数闭域上,任何有限维的点Hopf代数都是由它的类群元和偏基元生成的代数。作为我们的主要结果的一个应用,我们证明了类群元群是阿贝尔的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nichols algebras of diagonal type
We give an explicit and essentially minimal list of defining relations of a Nichols algebra of diagonal type with finite root system. This list contains the well-known quantum Serre relations but also many new variations. A conjecture by Andruskiewitsch and Schneider states that any finite-dimensional pointed Hopf algebra over an algebraically closed field of characteristic zero is generated as an algebra by its group-like and skew-primitive elements. As an application of our main result, we prove the conjecture when the group of group-like elements is abelian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信