重型工业燃气轮机建模、辨识与控制

I. Yousefi, M. Yari, M. A. Shoorehdeli
{"title":"重型工业燃气轮机建模、辨识与控制","authors":"I. Yousefi, M. Yari, M. A. Shoorehdeli","doi":"10.1109/ICMA.2013.6617986","DOIUrl":null,"url":null,"abstract":"In this paper, modeling, identification and control of a real 162MW heavy duty industrial gas turbine is taken into account. This work is aimed to introduce a simple and comprehensive model to test various controllers. Rowen's model is used to present the mechanical behavior of the gas turbine, while the identification of it is done using a feedforward neural network. The control rules of the turbine are applied on both models and a comparison of the results is also presented.","PeriodicalId":335884,"journal":{"name":"2013 IEEE International Conference on Mechatronics and Automation","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Modeling, identification and control of a heavy duty industrial gas turbine\",\"authors\":\"I. Yousefi, M. Yari, M. A. Shoorehdeli\",\"doi\":\"10.1109/ICMA.2013.6617986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, modeling, identification and control of a real 162MW heavy duty industrial gas turbine is taken into account. This work is aimed to introduce a simple and comprehensive model to test various controllers. Rowen's model is used to present the mechanical behavior of the gas turbine, while the identification of it is done using a feedforward neural network. The control rules of the turbine are applied on both models and a comparison of the results is also presented.\",\"PeriodicalId\":335884,\"journal\":{\"name\":\"2013 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2013.6617986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2013.6617986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文以一台实际的162MW重型工业燃气轮机为研究对象,对其进行建模、辨识和控制。本工作旨在介绍一个简单而全面的模型来测试各种控制器。采用Rowen模型来描述燃气轮机的力学行为,并采用前馈神经网络对其进行辨识。将汽轮机的控制规则应用于两种模型,并对结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling, identification and control of a heavy duty industrial gas turbine
In this paper, modeling, identification and control of a real 162MW heavy duty industrial gas turbine is taken into account. This work is aimed to introduce a simple and comprehensive model to test various controllers. Rowen's model is used to present the mechanical behavior of the gas turbine, while the identification of it is done using a feedforward neural network. The control rules of the turbine are applied on both models and a comparison of the results is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信