{"title":"重型工业燃气轮机建模、辨识与控制","authors":"I. Yousefi, M. Yari, M. A. Shoorehdeli","doi":"10.1109/ICMA.2013.6617986","DOIUrl":null,"url":null,"abstract":"In this paper, modeling, identification and control of a real 162MW heavy duty industrial gas turbine is taken into account. This work is aimed to introduce a simple and comprehensive model to test various controllers. Rowen's model is used to present the mechanical behavior of the gas turbine, while the identification of it is done using a feedforward neural network. The control rules of the turbine are applied on both models and a comparison of the results is also presented.","PeriodicalId":335884,"journal":{"name":"2013 IEEE International Conference on Mechatronics and Automation","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Modeling, identification and control of a heavy duty industrial gas turbine\",\"authors\":\"I. Yousefi, M. Yari, M. A. Shoorehdeli\",\"doi\":\"10.1109/ICMA.2013.6617986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, modeling, identification and control of a real 162MW heavy duty industrial gas turbine is taken into account. This work is aimed to introduce a simple and comprehensive model to test various controllers. Rowen's model is used to present the mechanical behavior of the gas turbine, while the identification of it is done using a feedforward neural network. The control rules of the turbine are applied on both models and a comparison of the results is also presented.\",\"PeriodicalId\":335884,\"journal\":{\"name\":\"2013 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2013.6617986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2013.6617986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling, identification and control of a heavy duty industrial gas turbine
In this paper, modeling, identification and control of a real 162MW heavy duty industrial gas turbine is taken into account. This work is aimed to introduce a simple and comprehensive model to test various controllers. Rowen's model is used to present the mechanical behavior of the gas turbine, while the identification of it is done using a feedforward neural network. The control rules of the turbine are applied on both models and a comparison of the results is also presented.