连续时间模型选择

L. Gerencsér, Z. Vágó
{"title":"连续时间模型选择","authors":"L. Gerencsér, Z. Vágó","doi":"10.1109/CDC.1991.261466","DOIUrl":null,"url":null,"abstract":"The foundations of a theory of model selection for continuous-time autoregressive systems is outlined. The authors define the predictive stochastic complexity for continuous-time systems and investigate its asymptotic properties. An almost sure asymptotic result is presented.<<ETX>>","PeriodicalId":344553,"journal":{"name":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Model selection in continuous time\",\"authors\":\"L. Gerencsér, Z. Vágó\",\"doi\":\"10.1109/CDC.1991.261466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The foundations of a theory of model selection for continuous-time autoregressive systems is outlined. The authors define the predictive stochastic complexity for continuous-time systems and investigate its asymptotic properties. An almost sure asymptotic result is presented.<<ETX>>\",\"PeriodicalId\":344553,\"journal\":{\"name\":\"[1991] Proceedings of the 30th IEEE Conference on Decision and Control\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the 30th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1991.261466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1991.261466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

概述了连续时间自回归系统模型选择理论的基础。定义了连续时间系统的预测随机复杂度,并研究了其渐近性质。给出了一个几乎肯定的渐近结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model selection in continuous time
The foundations of a theory of model selection for continuous-time autoregressive systems is outlined. The authors define the predictive stochastic complexity for continuous-time systems and investigate its asymptotic properties. An almost sure asymptotic result is presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信