整数和实数上可定一阶逻辑的分解

F. Bouchy, A. Finkel, Jérôme Leroux
{"title":"整数和实数上可定一阶逻辑的分解","authors":"F. Bouchy, A. Finkel, Jérôme Leroux","doi":"10.1109/TIME.2008.22","DOIUrl":null,"url":null,"abstract":"We tackle the issue of representing infinite sets of real- valued vectors. This paper introduces an operator for combining integer and real sets. Using this operator, we decompose three well-known logics extending Presburger with reals. Our decomposition splits a logic into two parts : one integer, and one decimal (i.e. on the interval [0,1]). We also give a basis for an implementation of our representation.","PeriodicalId":142549,"journal":{"name":"2008 15th International Symposium on Temporal Representation and Reasoning","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Decomposition of Decidable First-Order Logics over Integers and Reals\",\"authors\":\"F. Bouchy, A. Finkel, Jérôme Leroux\",\"doi\":\"10.1109/TIME.2008.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We tackle the issue of representing infinite sets of real- valued vectors. This paper introduces an operator for combining integer and real sets. Using this operator, we decompose three well-known logics extending Presburger with reals. Our decomposition splits a logic into two parts : one integer, and one decimal (i.e. on the interval [0,1]). We also give a basis for an implementation of our representation.\",\"PeriodicalId\":142549,\"journal\":{\"name\":\"2008 15th International Symposium on Temporal Representation and Reasoning\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 15th International Symposium on Temporal Representation and Reasoning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIME.2008.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 15th International Symposium on Temporal Representation and Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIME.2008.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们处理表示实值向量的无穷集的问题。介绍了一种整数集与实数集组合的算子。利用这个算子,我们分解了三个著名的用实数扩展Presburger的逻辑。我们的分解将逻辑分成两部分:一个整数和一个小数(即在区间[0,1]上)。我们还为我们的表示的实现提供了一个基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition of Decidable First-Order Logics over Integers and Reals
We tackle the issue of representing infinite sets of real- valued vectors. This paper introduces an operator for combining integer and real sets. Using this operator, we decompose three well-known logics extending Presburger with reals. Our decomposition splits a logic into two parts : one integer, and one decimal (i.e. on the interval [0,1]). We also give a basis for an implementation of our representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信