基于一阶构形关系的性别自动检测分析

M. Atici
{"title":"基于一阶构形关系的性别自动检测分析","authors":"M. Atici","doi":"10.1109/UBMK.2017.8093524","DOIUrl":null,"url":null,"abstract":"Automatic gender detection from face images is a challenging problem. In the literature, different techniques have been applied so far on face images for gender detection. In contrast to these existing methods, we have analyzed the usage of first-order configural relations of the face to predict gender from images by using machine learning algorithms. In experiments on the dataset of Wikipedia profile pictures, 83% of general accuracy, 83.3% detection rate for male faces and 82.7% detection rate for female faces have been achieved by Logistic Regression. These results indicate that first-order configural relations are effective in automatic gender prediction from digital face images.","PeriodicalId":201903,"journal":{"name":"2017 International Conference on Computer Science and Engineering (UBMK)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analysis of automatic gender detection by first-order configural relations\",\"authors\":\"M. Atici\",\"doi\":\"10.1109/UBMK.2017.8093524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic gender detection from face images is a challenging problem. In the literature, different techniques have been applied so far on face images for gender detection. In contrast to these existing methods, we have analyzed the usage of first-order configural relations of the face to predict gender from images by using machine learning algorithms. In experiments on the dataset of Wikipedia profile pictures, 83% of general accuracy, 83.3% detection rate for male faces and 82.7% detection rate for female faces have been achieved by Logistic Regression. These results indicate that first-order configural relations are effective in automatic gender prediction from digital face images.\",\"PeriodicalId\":201903,\"journal\":{\"name\":\"2017 International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK.2017.8093524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2017.8093524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人脸图像的性别自动检测是一个具有挑战性的问题。在文献中,目前已有不同的技术应用于人脸图像的性别检测。与这些现有方法相比,我们分析了使用机器学习算法从图像中使用面部的一阶结构关系来预测性别。在维基百科头像数据集上进行的实验中,采用Logistic回归的方法可以达到83%的一般准确率、83.3%的男性人脸检测率和82.7%的女性人脸检测率。结果表明,一阶构形关系在人脸图像性别自动预测中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analysis of automatic gender detection by first-order configural relations
Automatic gender detection from face images is a challenging problem. In the literature, different techniques have been applied so far on face images for gender detection. In contrast to these existing methods, we have analyzed the usage of first-order configural relations of the face to predict gender from images by using machine learning algorithms. In experiments on the dataset of Wikipedia profile pictures, 83% of general accuracy, 83.3% detection rate for male faces and 82.7% detection rate for female faces have been achieved by Logistic Regression. These results indicate that first-order configural relations are effective in automatic gender prediction from digital face images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信