自动检测会议录音中的动作项

W. Morgan, Pi-Chuan Chang, Surabhi Gupta, Jason M. Brenier
{"title":"自动检测会议录音中的动作项","authors":"W. Morgan, Pi-Chuan Chang, Surabhi Gupta, Jason M. Brenier","doi":"10.3115/1654595.1654614","DOIUrl":null,"url":null,"abstract":"Identification of action items in meeting recordings can provide immediate access to salient information in a medium notoriously difficult to search and summarize. To this end, we use a maximum entropy model to automatically detect action item-related utterances from multi-party audio meeting recordings. We compare the effect of lexical, temporal, syntactic, semantic, and prosodic features on system performance. We show that on a corpus of action item annotations on the ICSI meeting recordings, characterized by high imbalance and low inter-annotator agreement, the system performs at an F measure of 31.92%. While this is low compared to better-studied tasks on more mature corpora, the relative usefulness of the features towards this task is indicative of their usefulness on more consistent annotations, as well as to related tasks.","PeriodicalId":426429,"journal":{"name":"SIGDIAL Workshop","volume":"1663 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Automatically Detecting Action Items in Audio Meeting Recordings\",\"authors\":\"W. Morgan, Pi-Chuan Chang, Surabhi Gupta, Jason M. Brenier\",\"doi\":\"10.3115/1654595.1654614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of action items in meeting recordings can provide immediate access to salient information in a medium notoriously difficult to search and summarize. To this end, we use a maximum entropy model to automatically detect action item-related utterances from multi-party audio meeting recordings. We compare the effect of lexical, temporal, syntactic, semantic, and prosodic features on system performance. We show that on a corpus of action item annotations on the ICSI meeting recordings, characterized by high imbalance and low inter-annotator agreement, the system performs at an F measure of 31.92%. While this is low compared to better-studied tasks on more mature corpora, the relative usefulness of the features towards this task is indicative of their usefulness on more consistent annotations, as well as to related tasks.\",\"PeriodicalId\":426429,\"journal\":{\"name\":\"SIGDIAL Workshop\",\"volume\":\"1663 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGDIAL Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1654595.1654614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGDIAL Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1654595.1654614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在会议记录中确定行动项目可以在一种众所周知难以搜索和总结的媒体中提供对重要信息的即时访问。为此,我们使用最大熵模型来自动检测多方音频会议记录中与动作项目相关的话语。我们比较了词汇、时间、句法、语义和韵律特征对系统性能的影响。结果表明,在ICSI会议记录的动作项注释语料库中,该系统的F度量值为31.92%,其特征是注释者之间的不平衡程度高,注释者之间的一致性低。虽然这与在更成熟的语料库上研究得更好的任务相比是低的,但这些特征对该任务的相对有用性表明它们对更一致的注释以及相关任务的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatically Detecting Action Items in Audio Meeting Recordings
Identification of action items in meeting recordings can provide immediate access to salient information in a medium notoriously difficult to search and summarize. To this end, we use a maximum entropy model to automatically detect action item-related utterances from multi-party audio meeting recordings. We compare the effect of lexical, temporal, syntactic, semantic, and prosodic features on system performance. We show that on a corpus of action item annotations on the ICSI meeting recordings, characterized by high imbalance and low inter-annotator agreement, the system performs at an F measure of 31.92%. While this is low compared to better-studied tasks on more mature corpora, the relative usefulness of the features towards this task is indicative of their usefulness on more consistent annotations, as well as to related tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信