动态环境下稳健投资组合优化的正则化超量选择

Carlos R. B. Azevedo, F. V. Zuben
{"title":"动态环境下稳健投资组合优化的正则化超量选择","authors":"Carlos R. B. Azevedo, F. V. Zuben","doi":"10.1109/CEC.2013.6557823","DOIUrl":null,"url":null,"abstract":"This paper proposes a regularized hypervolume (SMetric) selection algorithm. The proposal is used for incorporating stability and diversification in financial portfolios obtained by solving a temporal sequence of multi-objective Mean Variance Problems (MVP) on real-world stock data, for short to longterm rebalancing periods. We also propose the usage of robust statistics for estimating the parameters of the assets returns distribution so that we are able to test two variants (with and without regularization) on dynamic environments under different levels of instability. The results suggest that the maximum attaining Sharpe Ratio portfolios obtained for the original MVP without regularization are unstable, yielding high turnover rates, whereas solving the robust MVP with regularization mitigated turnover, providing more stable solutions for unseen, dynamic environments. Finally, we report an apparent conflict between stability in the objective space and in the decision space.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Regularized hypervolume selection for robust portfolio optimization in dynamic environments\",\"authors\":\"Carlos R. B. Azevedo, F. V. Zuben\",\"doi\":\"10.1109/CEC.2013.6557823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a regularized hypervolume (SMetric) selection algorithm. The proposal is used for incorporating stability and diversification in financial portfolios obtained by solving a temporal sequence of multi-objective Mean Variance Problems (MVP) on real-world stock data, for short to longterm rebalancing periods. We also propose the usage of robust statistics for estimating the parameters of the assets returns distribution so that we are able to test two variants (with and without regularization) on dynamic environments under different levels of instability. The results suggest that the maximum attaining Sharpe Ratio portfolios obtained for the original MVP without regularization are unstable, yielding high turnover rates, whereas solving the robust MVP with regularization mitigated turnover, providing more stable solutions for unseen, dynamic environments. Finally, we report an apparent conflict between stability in the objective space and in the decision space.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种正则化超体积(SMetric)选择算法。该建议用于通过解决现实世界股票数据上的多目标均值方差问题(MVP)的时间序列,在短期到长期的再平衡期间,将稳定性和多样化纳入金融投资组合中。我们还建议使用稳健统计来估计资产回报分布的参数,以便我们能够在不同不稳定水平的动态环境中测试两种变体(有和没有正则化)。结果表明,未经正则化的原始MVP获得的最大夏普比率组合是不稳定的,产生高周转率,而使用正则化减轻周转率的鲁棒MVP解决方案,在未知的动态环境中提供更稳定的解决方案。最后,我们报告了在目标空间和决策空间的稳定性之间的明显冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularized hypervolume selection for robust portfolio optimization in dynamic environments
This paper proposes a regularized hypervolume (SMetric) selection algorithm. The proposal is used for incorporating stability and diversification in financial portfolios obtained by solving a temporal sequence of multi-objective Mean Variance Problems (MVP) on real-world stock data, for short to longterm rebalancing periods. We also propose the usage of robust statistics for estimating the parameters of the assets returns distribution so that we are able to test two variants (with and without regularization) on dynamic environments under different levels of instability. The results suggest that the maximum attaining Sharpe Ratio portfolios obtained for the original MVP without regularization are unstable, yielding high turnover rates, whereas solving the robust MVP with regularization mitigated turnover, providing more stable solutions for unseen, dynamic environments. Finally, we report an apparent conflict between stability in the objective space and in the decision space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信