基于CSR矩阵表示的结构检测SpMV性能研究

Hans Pabst, Beverly Bachmayer, Michael Klemm
{"title":"基于CSR矩阵表示的结构检测SpMV性能研究","authors":"Hans Pabst, Beverly Bachmayer, Michael Klemm","doi":"10.1109/ISPDC.2012.9","DOIUrl":null,"url":null,"abstract":"Sparse matrix-vector multiplication (SpMV) is an important building block for many scientific applications. Various formats exist to store and represent sparse matrices in the computer's memory. The compressed row storage format (CRS or CSR) is typically a baseline to report a new hybrid or an improved representation of sparse matrices. In this paper, we describe the implementation and performance benefit of a structure-detecting SpMV algorithm using the CSR format. Our implementation detects contiguous rows in the sparse matrix representation to improve the performance of the computation by making better use of the available memory bandwidth. Applications with mixed or a-priori unknown matrix structures can take advantage of the runtime structure detection. We show that the additional control flow needed does not degrade performance, but may deliver up to twice the performance of the traditional SpMV algorithm.","PeriodicalId":287900,"journal":{"name":"2012 11th International Symposium on Parallel and Distributed Computing","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance of a Structure-Detecting SpMV Using the CSR Matrix Representation\",\"authors\":\"Hans Pabst, Beverly Bachmayer, Michael Klemm\",\"doi\":\"10.1109/ISPDC.2012.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse matrix-vector multiplication (SpMV) is an important building block for many scientific applications. Various formats exist to store and represent sparse matrices in the computer's memory. The compressed row storage format (CRS or CSR) is typically a baseline to report a new hybrid or an improved representation of sparse matrices. In this paper, we describe the implementation and performance benefit of a structure-detecting SpMV algorithm using the CSR format. Our implementation detects contiguous rows in the sparse matrix representation to improve the performance of the computation by making better use of the available memory bandwidth. Applications with mixed or a-priori unknown matrix structures can take advantage of the runtime structure detection. We show that the additional control flow needed does not degrade performance, but may deliver up to twice the performance of the traditional SpMV algorithm.\",\"PeriodicalId\":287900,\"journal\":{\"name\":\"2012 11th International Symposium on Parallel and Distributed Computing\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Symposium on Parallel and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDC.2012.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Symposium on Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC.2012.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

稀疏矩阵向量乘法(SpMV)是许多科学应用的重要组成部分。存在各种格式来存储和表示计算机内存中的稀疏矩阵。压缩行存储格式(CRS或CSR)通常是报告稀疏矩阵的新混合表示或改进表示的基线。在本文中,我们描述了使用CSR格式的结构检测SpMV算法的实现和性能优势。我们的实现检测稀疏矩阵表示中的连续行,通过更好地利用可用内存带宽来提高计算性能。具有混合或先验未知矩阵结构的应用程序可以利用运行时结构检测。我们表明,所需的额外控制流不会降低性能,但可能提供高达两倍于传统SpMV算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of a Structure-Detecting SpMV Using the CSR Matrix Representation
Sparse matrix-vector multiplication (SpMV) is an important building block for many scientific applications. Various formats exist to store and represent sparse matrices in the computer's memory. The compressed row storage format (CRS or CSR) is typically a baseline to report a new hybrid or an improved representation of sparse matrices. In this paper, we describe the implementation and performance benefit of a structure-detecting SpMV algorithm using the CSR format. Our implementation detects contiguous rows in the sparse matrix representation to improve the performance of the computation by making better use of the available memory bandwidth. Applications with mixed or a-priori unknown matrix structures can take advantage of the runtime structure detection. We show that the additional control flow needed does not degrade performance, but may deliver up to twice the performance of the traditional SpMV algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信