基于自适应积分速度滑模控制方法的最优AGWO-IMC-PID控制器设计与LFC控制

Rahul Singh, J. Kumar, Jay Singh, Anurag Singh
{"title":"基于自适应积分速度滑模控制方法的最优AGWO-IMC-PID控制器设计与LFC控制","authors":"Rahul Singh, J. Kumar, Jay Singh, Anurag Singh","doi":"10.1109/PIECON56912.2023.10085790","DOIUrl":null,"url":null,"abstract":"This work develops an optimal AGWO IMC PID controller and derating using AGWO (Adaptive Gray Wolf Optimization Algorithm) for load frequency control (LFC) of high-power systems using model approximation methods. An ideal low-dimensional model (ROM) of the studied large-scale energy system is identified by reducing the integral squared error (ISE) between step responses, a performance parameter used to quantify performance. Lyapunov stability theory produces strong linear matrix inequalities that guarantee the integrity of the entire energy system. Second, the LFC design is done using an optimized ROM rather than a high-power grid concept. AGWO’s new IMC-PID controller architecture improves power system dynamic stability by providing excellent reference input tracking performance, robust spurious rejection, and improved reference input tracking performance. In comparison to earlier studies, the simulation results clearly demonstrate a significant improvement in the LFC’s reaction to load disturbances and the existence of uncertainties.","PeriodicalId":182428,"journal":{"name":"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive integral velocity sliding mode control approach-based optimal AGWO-IMC-PID controller design and LFC for LSPS\",\"authors\":\"Rahul Singh, J. Kumar, Jay Singh, Anurag Singh\",\"doi\":\"10.1109/PIECON56912.2023.10085790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work develops an optimal AGWO IMC PID controller and derating using AGWO (Adaptive Gray Wolf Optimization Algorithm) for load frequency control (LFC) of high-power systems using model approximation methods. An ideal low-dimensional model (ROM) of the studied large-scale energy system is identified by reducing the integral squared error (ISE) between step responses, a performance parameter used to quantify performance. Lyapunov stability theory produces strong linear matrix inequalities that guarantee the integrity of the entire energy system. Second, the LFC design is done using an optimized ROM rather than a high-power grid concept. AGWO’s new IMC-PID controller architecture improves power system dynamic stability by providing excellent reference input tracking performance, robust spurious rejection, and improved reference input tracking performance. In comparison to earlier studies, the simulation results clearly demonstrate a significant improvement in the LFC’s reaction to load disturbances and the existence of uncertainties.\",\"PeriodicalId\":182428,\"journal\":{\"name\":\"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIECON56912.2023.10085790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIECON56912.2023.10085790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了一种最优的AGWO IMC PID控制器,并使用AGWO(自适应灰狼优化算法)降速,使用模型近似方法用于大功率系统的负载频率控制(LFC)。通过减少阶跃响应之间的积分平方误差(ISE),确定了所研究的大型能源系统的理想低维模型(ROM)。李雅普诺夫稳定性理论产生了强线性矩阵不等式,保证了整个能量系统的完整性。其次,LFC设计使用优化的ROM而不是高功率电网概念。AGWO的新型IMC-PID控制器架构通过提供出色的参考输入跟踪性能、鲁棒的杂散抑制和改进的参考输入跟踪性能,提高了电力系统的动态稳定性。与早期的研究相比,仿真结果清楚地表明LFC对负载扰动和不确定性的反应有了显著的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive integral velocity sliding mode control approach-based optimal AGWO-IMC-PID controller design and LFC for LSPS
This work develops an optimal AGWO IMC PID controller and derating using AGWO (Adaptive Gray Wolf Optimization Algorithm) for load frequency control (LFC) of high-power systems using model approximation methods. An ideal low-dimensional model (ROM) of the studied large-scale energy system is identified by reducing the integral squared error (ISE) between step responses, a performance parameter used to quantify performance. Lyapunov stability theory produces strong linear matrix inequalities that guarantee the integrity of the entire energy system. Second, the LFC design is done using an optimized ROM rather than a high-power grid concept. AGWO’s new IMC-PID controller architecture improves power system dynamic stability by providing excellent reference input tracking performance, robust spurious rejection, and improved reference input tracking performance. In comparison to earlier studies, the simulation results clearly demonstrate a significant improvement in the LFC’s reaction to load disturbances and the existence of uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信