卷积神经网络硬件加速的广义池化VLSI架构

Akash Ther, Binit Kumar Pandit, Ayan Banerjee
{"title":"卷积神经网络硬件加速的广义池化VLSI架构","authors":"Akash Ther, Binit Kumar Pandit, Ayan Banerjee","doi":"10.1109/ESDC56251.2023.10149878","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) handle a massive variety of datasets with great accuracy for various image processing and computer vision applications. However, it comes at the cost of the requirement of large hardware resources, which are computational and energy extensive. There is a need for efficient hardware and algorithmic optimization for real-time CNN inference while deploying the CNN model. This paper proposes a novel VLSI architecture of generalized pooling operation for hardware acceleration of CNN inference in real-time. Generalized pooling operation adaptively downsamples the huge parameter set generated by the convolutional layer by generating weights as per the input features. It is capable of accommodating varying feature maps and preserves significant features, unlike other counterparts maximum and average pooling. In order to efficiently compute the output of the generalised pooling operation, the proposed hardware design makes use of the Newton-Raphson reciprocal approximation for division operations, a low number of comparators, and a high degree of parallelism. The proposed architecture is developed and tested for performance evaluation on Xilinx Vivado 2018.3, and the target device chosen is Zynq UltraScale + MPSoC ZCU104 Evaluation board.","PeriodicalId":354855,"journal":{"name":"2023 11th International Symposium on Electronic Systems Devices and Computing (ESDC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VLSI Architecture of Generalized Pooling for Hardware Acceleration of Convolutional Neural Networks\",\"authors\":\"Akash Ther, Binit Kumar Pandit, Ayan Banerjee\",\"doi\":\"10.1109/ESDC56251.2023.10149878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNNs) handle a massive variety of datasets with great accuracy for various image processing and computer vision applications. However, it comes at the cost of the requirement of large hardware resources, which are computational and energy extensive. There is a need for efficient hardware and algorithmic optimization for real-time CNN inference while deploying the CNN model. This paper proposes a novel VLSI architecture of generalized pooling operation for hardware acceleration of CNN inference in real-time. Generalized pooling operation adaptively downsamples the huge parameter set generated by the convolutional layer by generating weights as per the input features. It is capable of accommodating varying feature maps and preserves significant features, unlike other counterparts maximum and average pooling. In order to efficiently compute the output of the generalised pooling operation, the proposed hardware design makes use of the Newton-Raphson reciprocal approximation for division operations, a low number of comparators, and a high degree of parallelism. The proposed architecture is developed and tested for performance evaluation on Xilinx Vivado 2018.3, and the target device chosen is Zynq UltraScale + MPSoC ZCU104 Evaluation board.\",\"PeriodicalId\":354855,\"journal\":{\"name\":\"2023 11th International Symposium on Electronic Systems Devices and Computing (ESDC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 11th International Symposium on Electronic Systems Devices and Computing (ESDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESDC56251.2023.10149878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International Symposium on Electronic Systems Devices and Computing (ESDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESDC56251.2023.10149878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(cnn)以极高的精度处理各种图像处理和计算机视觉应用的大量数据集。然而,它的代价是需要大量的硬件资源,这些资源需要大量的计算和能源。在部署CNN模型时,需要对实时CNN推理进行有效的硬件和算法优化。本文提出了一种基于广义池化运算的VLSI架构,用于CNN推理的实时硬件加速。广义池化操作根据输入特征生成权值,自适应地对卷积层生成的庞大参数集进行下采样。它能够适应不同的特征映射,并保留重要的特征,不像其他对等的最大和平均池化。为了有效地计算广义池化操作的输出,所提出的硬件设计利用牛顿-拉夫森互反近似进行除法操作,较少的比较器数量和高度的并行性。在Xilinx Vivado 2018.3平台上开发并测试了所提出的架构,并选择了Zynq UltraScale + MPSoC ZCU104评估板作为目标器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VLSI Architecture of Generalized Pooling for Hardware Acceleration of Convolutional Neural Networks
Convolutional Neural Networks (CNNs) handle a massive variety of datasets with great accuracy for various image processing and computer vision applications. However, it comes at the cost of the requirement of large hardware resources, which are computational and energy extensive. There is a need for efficient hardware and algorithmic optimization for real-time CNN inference while deploying the CNN model. This paper proposes a novel VLSI architecture of generalized pooling operation for hardware acceleration of CNN inference in real-time. Generalized pooling operation adaptively downsamples the huge parameter set generated by the convolutional layer by generating weights as per the input features. It is capable of accommodating varying feature maps and preserves significant features, unlike other counterparts maximum and average pooling. In order to efficiently compute the output of the generalised pooling operation, the proposed hardware design makes use of the Newton-Raphson reciprocal approximation for division operations, a low number of comparators, and a high degree of parallelism. The proposed architecture is developed and tested for performance evaluation on Xilinx Vivado 2018.3, and the target device chosen is Zynq UltraScale + MPSoC ZCU104 Evaluation board.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信