最大限度地提高对流传感器数据的查询吞吐量

Joseph S. Gomes, Hyeong-Ah Choi
{"title":"最大限度地提高对流传感器数据的查询吞吐量","authors":"Joseph S. Gomes, Hyeong-Ah Choi","doi":"10.1109/MOBHOC.2006.278617","DOIUrl":null,"url":null,"abstract":"Sensors are becoming ubiquitous, and increasingly integrated with our lives. Sensors usually send sampled data periodically using wireless connections to server machines. The servers perform various operations (e.g. filter, aggregate, join etc) on this data in real-time according to predefined queries or rules. In this paper, we address the problem of finding an optimal join tree that maximizes throughput for sliding window based multi-join queries over continuous sensor data streams. We develop a dynamic programming algorithm OptDP, that produces an optimal tree but runs in an exponential time in the number of input streams. We then present a polynomial time greedy algorithm XGreedyJoin. Our experiments in ARES show that for almost all instances, trees from XGreedyJoin perform close to the optimal trees from OptDP, and significantly better than existing XJoin based heuristic algorithms","PeriodicalId":345003,"journal":{"name":"2006 IEEE International Conference on Mobile Ad Hoc and Sensor Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Maximizing Throughput for Queries over Streaming Sensor Data\",\"authors\":\"Joseph S. Gomes, Hyeong-Ah Choi\",\"doi\":\"10.1109/MOBHOC.2006.278617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensors are becoming ubiquitous, and increasingly integrated with our lives. Sensors usually send sampled data periodically using wireless connections to server machines. The servers perform various operations (e.g. filter, aggregate, join etc) on this data in real-time according to predefined queries or rules. In this paper, we address the problem of finding an optimal join tree that maximizes throughput for sliding window based multi-join queries over continuous sensor data streams. We develop a dynamic programming algorithm OptDP, that produces an optimal tree but runs in an exponential time in the number of input streams. We then present a polynomial time greedy algorithm XGreedyJoin. Our experiments in ARES show that for almost all instances, trees from XGreedyJoin perform close to the optimal trees from OptDP, and significantly better than existing XJoin based heuristic algorithms\",\"PeriodicalId\":345003,\"journal\":{\"name\":\"2006 IEEE International Conference on Mobile Ad Hoc and Sensor Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Mobile Ad Hoc and Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MOBHOC.2006.278617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Mobile Ad Hoc and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOBHOC.2006.278617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

传感器正变得无处不在,并日益融入我们的生活。传感器通常使用无线连接周期性地向服务器发送采样数据。服务器根据预定义的查询或规则对这些数据实时执行各种操作(如过滤、聚合、连接等)。在本文中,我们解决了在连续传感器数据流上寻找基于滑动窗口的多连接查询的最大吞吐量的最优连接树的问题。我们开发了一种动态规划算法OptDP,它产生了一棵最优树,但在输入流数量上运行的时间是指数级的。然后我们提出了一个多项式时间贪婪算法XGreedyJoin。我们在ARES中的实验表明,对于几乎所有实例,来自XGreedyJoin的树的性能接近于来自OptDP的最优树,并且明显优于现有的基于XJoin的启发式算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximizing Throughput for Queries over Streaming Sensor Data
Sensors are becoming ubiquitous, and increasingly integrated with our lives. Sensors usually send sampled data periodically using wireless connections to server machines. The servers perform various operations (e.g. filter, aggregate, join etc) on this data in real-time according to predefined queries or rules. In this paper, we address the problem of finding an optimal join tree that maximizes throughput for sliding window based multi-join queries over continuous sensor data streams. We develop a dynamic programming algorithm OptDP, that produces an optimal tree but runs in an exponential time in the number of input streams. We then present a polynomial time greedy algorithm XGreedyJoin. Our experiments in ARES show that for almost all instances, trees from XGreedyJoin perform close to the optimal trees from OptDP, and significantly better than existing XJoin based heuristic algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信