基于区域HOG和SVM的人群估计

J. Ilao, M. Cordel
{"title":"基于区域HOG和SVM的人群估计","authors":"J. Ilao, M. Cordel","doi":"10.1109/JCSSE.2018.8457384","DOIUrl":null,"url":null,"abstract":"Algorithms that perform crowd estimation are dependent on crowd levels. The two approaches to crowd estimation discussed are the model-based and texture-based approaches. The aim of this work is to determine the precision, recall and F-measure of the two algorithms, Histogram of Oriented Gradients (HOG) with Support Vector Machines (SVM) and Region-Specific HOG, for estimating the number of people in high and low crowd levels, respectively, in an indoor area installed with a surveillance camera, while considering the camera’s position and its field of view.","PeriodicalId":338973,"journal":{"name":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Crowd Estimation Using Region-Specific HOG With SVM\",\"authors\":\"J. Ilao, M. Cordel\",\"doi\":\"10.1109/JCSSE.2018.8457384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithms that perform crowd estimation are dependent on crowd levels. The two approaches to crowd estimation discussed are the model-based and texture-based approaches. The aim of this work is to determine the precision, recall and F-measure of the two algorithms, Histogram of Oriented Gradients (HOG) with Support Vector Machines (SVM) and Region-Specific HOG, for estimating the number of people in high and low crowd levels, respectively, in an indoor area installed with a surveillance camera, while considering the camera’s position and its field of view.\",\"PeriodicalId\":338973,\"journal\":{\"name\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2018.8457384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2018.8457384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

执行人群估计的算法依赖于人群水平。讨论了基于模型和基于纹理的人群估计方法。本研究的目的是确定两种算法的精度、召回率和F-measure,即基于支持向量机(SVM)的定向梯度直方图(HOG)和基于区域的梯度直方图(Region-Specific HOG),分别用于在安装了监控摄像头的室内区域估计高人群和低人群水平的人数,同时考虑摄像头的位置和视野。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crowd Estimation Using Region-Specific HOG With SVM
Algorithms that perform crowd estimation are dependent on crowd levels. The two approaches to crowd estimation discussed are the model-based and texture-based approaches. The aim of this work is to determine the precision, recall and F-measure of the two algorithms, Histogram of Oriented Gradients (HOG) with Support Vector Machines (SVM) and Region-Specific HOG, for estimating the number of people in high and low crowd levels, respectively, in an indoor area installed with a surveillance camera, while considering the camera’s position and its field of view.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信