支持向量机加性核分类的加速随机梯度方法

Xufeng Wang, Shuisheng Zhou
{"title":"支持向量机加性核分类的加速随机梯度方法","authors":"Xufeng Wang, Shuisheng Zhou","doi":"10.1109/EIIS.2017.8298732","DOIUrl":null,"url":null,"abstract":"Support vector machines (SVMs) have been widely used for classification in machine learning and data mining. However, SVM faces a huge challenge in large scale classification tasks. Recent progresses have enabled additive kernel version of SVM efficiently solves such large scale problems nearly as fast as a linear classifier. This paper proposes a new accelerated mini-batch stochastic gradient descent algorithm for SVM classification with additive kernel (AK-ASGD). On the one hand, the gradient is approximated by the sum of a scalar polynomial function for each feature dimension; on the other hand, Nesterov's acceleration strategy is used. The experimental results on benchmark large scale classification data sets show that our proposed algorithm can achieve higher testing accuracies and has faster convergence rate.","PeriodicalId":434246,"journal":{"name":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accelerated stochastic gradient method for support vector machines classification with additive kernel\",\"authors\":\"Xufeng Wang, Shuisheng Zhou\",\"doi\":\"10.1109/EIIS.2017.8298732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector machines (SVMs) have been widely used for classification in machine learning and data mining. However, SVM faces a huge challenge in large scale classification tasks. Recent progresses have enabled additive kernel version of SVM efficiently solves such large scale problems nearly as fast as a linear classifier. This paper proposes a new accelerated mini-batch stochastic gradient descent algorithm for SVM classification with additive kernel (AK-ASGD). On the one hand, the gradient is approximated by the sum of a scalar polynomial function for each feature dimension; on the other hand, Nesterov's acceleration strategy is used. The experimental results on benchmark large scale classification data sets show that our proposed algorithm can achieve higher testing accuracies and has faster convergence rate.\",\"PeriodicalId\":434246,\"journal\":{\"name\":\"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIIS.2017.8298732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIIS.2017.8298732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

支持向量机(svm)在机器学习和数据挖掘的分类中得到了广泛的应用。然而,支持向量机在大规模分类任务中面临着巨大的挑战。近年来的进展使得支持向量机的加性核版本能够像线性分类器一样有效地解决如此大规模的问题。提出了一种基于加性核的加速小批量随机梯度下降算法(AK-ASGD)。一方面,梯度近似为每个特征维的标量多项式函数的和;另一方面,采用Nesterov的加速策略。在基准大规模分类数据集上的实验结果表明,该算法具有更高的测试精度和更快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated stochastic gradient method for support vector machines classification with additive kernel
Support vector machines (SVMs) have been widely used for classification in machine learning and data mining. However, SVM faces a huge challenge in large scale classification tasks. Recent progresses have enabled additive kernel version of SVM efficiently solves such large scale problems nearly as fast as a linear classifier. This paper proposes a new accelerated mini-batch stochastic gradient descent algorithm for SVM classification with additive kernel (AK-ASGD). On the one hand, the gradient is approximated by the sum of a scalar polynomial function for each feature dimension; on the other hand, Nesterov's acceleration strategy is used. The experimental results on benchmark large scale classification data sets show that our proposed algorithm can achieve higher testing accuracies and has faster convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信