基于加速AO-ADMM的约束张量分解

Shaden Smith, Alec Beri, G. Karypis
{"title":"基于加速AO-ADMM的约束张量分解","authors":"Shaden Smith, Alec Beri, G. Karypis","doi":"10.1109/ICPP.2017.20","DOIUrl":null,"url":null,"abstract":"Low-rank sparse tensor factorization is a populartool for analyzing multi-way data and is used in domainssuch as recommender systems, precision healthcare, and cybersecurity.Imposing constraints on a factorization, such asnon-negativity or sparsity, is a natural way of encoding priorknowledge of the multi-way data. While constrained factorizationsare useful for practitioners, they can greatly increasefactorization time due to slower convergence and computationaloverheads. Recently, a hybrid of alternating optimization andalternating direction method of multipliers (AO-ADMM) wasshown to have both a high convergence rate and the ability tonaturally incorporate a variety of popular constraints. In thiswork, we present a parallelization strategy and two approachesfor accelerating AO-ADMM. By redefining the convergencecriteria of the inner ADMM iterations, we are able to splitthe data in a way that not only accelerates the per-iterationconvergence, but also speeds up the execution of the ADMMiterations due to efficient use of cache resources. Secondly,we develop a method of exploiting dynamic sparsity in thefactors to speed up tensor-matrix kernels. These combinedadvancements achieve up to 8 speedup over the state-of-the art on a variety of real-world sparse tensors.","PeriodicalId":392710,"journal":{"name":"2017 46th International Conference on Parallel Processing (ICPP)","volume":"81 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Constrained Tensor Factorization with Accelerated AO-ADMM\",\"authors\":\"Shaden Smith, Alec Beri, G. Karypis\",\"doi\":\"10.1109/ICPP.2017.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-rank sparse tensor factorization is a populartool for analyzing multi-way data and is used in domainssuch as recommender systems, precision healthcare, and cybersecurity.Imposing constraints on a factorization, such asnon-negativity or sparsity, is a natural way of encoding priorknowledge of the multi-way data. While constrained factorizationsare useful for practitioners, they can greatly increasefactorization time due to slower convergence and computationaloverheads. Recently, a hybrid of alternating optimization andalternating direction method of multipliers (AO-ADMM) wasshown to have both a high convergence rate and the ability tonaturally incorporate a variety of popular constraints. In thiswork, we present a parallelization strategy and two approachesfor accelerating AO-ADMM. By redefining the convergencecriteria of the inner ADMM iterations, we are able to splitthe data in a way that not only accelerates the per-iterationconvergence, but also speeds up the execution of the ADMMiterations due to efficient use of cache resources. Secondly,we develop a method of exploiting dynamic sparsity in thefactors to speed up tensor-matrix kernels. These combinedadvancements achieve up to 8 speedup over the state-of-the art on a variety of real-world sparse tensors.\",\"PeriodicalId\":392710,\"journal\":{\"name\":\"2017 46th International Conference on Parallel Processing (ICPP)\",\"volume\":\"81 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 46th International Conference on Parallel Processing (ICPP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2017.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 46th International Conference on Parallel Processing (ICPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2017.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

低秩稀疏张量分解是一种流行的多路数据分析工具,用于推荐系统、精准医疗和网络安全等领域。对分解施加约束,如非负性或稀疏性,是编码多路数据先验知识的自然方式。虽然约束分解对从业者很有用,但由于较慢的收敛和计算开销,它们会大大增加分解时间。近年来,一种交替优化和交替方向乘法器的混合方法(AO-ADMM)被证明具有较高的收敛速度和自然地纳入各种常用约束的能力。在这项工作中,我们提出了一种并行化策略和两种加速AO-ADMM的方法。通过重新定义内部ADMM迭代的收敛标准,我们能够以一种不仅加速逐迭代收敛的方式拆分数据,而且由于有效使用缓存资源,还可以加快ADMM迭代的执行速度。其次,我们开发了一种利用因子的动态稀疏性来加速张量矩阵核的方法。这些综合的进步在各种现实世界的稀疏张量上实现了高达8倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constrained Tensor Factorization with Accelerated AO-ADMM
Low-rank sparse tensor factorization is a populartool for analyzing multi-way data and is used in domainssuch as recommender systems, precision healthcare, and cybersecurity.Imposing constraints on a factorization, such asnon-negativity or sparsity, is a natural way of encoding priorknowledge of the multi-way data. While constrained factorizationsare useful for practitioners, they can greatly increasefactorization time due to slower convergence and computationaloverheads. Recently, a hybrid of alternating optimization andalternating direction method of multipliers (AO-ADMM) wasshown to have both a high convergence rate and the ability tonaturally incorporate a variety of popular constraints. In thiswork, we present a parallelization strategy and two approachesfor accelerating AO-ADMM. By redefining the convergencecriteria of the inner ADMM iterations, we are able to splitthe data in a way that not only accelerates the per-iterationconvergence, but also speeds up the execution of the ADMMiterations due to efficient use of cache resources. Secondly,we develop a method of exploiting dynamic sparsity in thefactors to speed up tensor-matrix kernels. These combinedadvancements achieve up to 8 speedup over the state-of-the art on a variety of real-world sparse tensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信