{"title":"利用多标签图割对左、右心室进行联合分割","authors":"Damien Grosgeorge, C. Petitjean, S. Ruan","doi":"10.1109/ISBI.2014.6867900","DOIUrl":null,"url":null,"abstract":"Segmenting the left ventricle (LV) and the right ventricle (RV) in magnetic resonance (MR) images is required for cardiac function assessment. In particular, the segmentation of the RV is a difficult task due to low contrast with surrounding tissues and high shape variability. To overcome these problems, we introduce a fully automatic segmentation method based on multi-label graph cuts, that makes use of a probabilistic shape model. The shape model is obtained by merging several atlases after their non-rigid registration on the unseen image. This prior is then incorporated into the multi-label graph cut framework in order to guide the segmentation. Our automatic segmentation method has been applied on 754 MR images. We show that encouraging results can be obtained for this challenging application.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Joint segmentation of right and left cardiac ventricles using multi-label graph cut\",\"authors\":\"Damien Grosgeorge, C. Petitjean, S. Ruan\",\"doi\":\"10.1109/ISBI.2014.6867900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmenting the left ventricle (LV) and the right ventricle (RV) in magnetic resonance (MR) images is required for cardiac function assessment. In particular, the segmentation of the RV is a difficult task due to low contrast with surrounding tissues and high shape variability. To overcome these problems, we introduce a fully automatic segmentation method based on multi-label graph cuts, that makes use of a probabilistic shape model. The shape model is obtained by merging several atlases after their non-rigid registration on the unseen image. This prior is then incorporated into the multi-label graph cut framework in order to guide the segmentation. Our automatic segmentation method has been applied on 754 MR images. We show that encouraging results can be obtained for this challenging application.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6867900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint segmentation of right and left cardiac ventricles using multi-label graph cut
Segmenting the left ventricle (LV) and the right ventricle (RV) in magnetic resonance (MR) images is required for cardiac function assessment. In particular, the segmentation of the RV is a difficult task due to low contrast with surrounding tissues and high shape variability. To overcome these problems, we introduce a fully automatic segmentation method based on multi-label graph cuts, that makes use of a probabilistic shape model. The shape model is obtained by merging several atlases after their non-rigid registration on the unseen image. This prior is then incorporated into the multi-label graph cut framework in order to guide the segmentation. Our automatic segmentation method has been applied on 754 MR images. We show that encouraging results can be obtained for this challenging application.