利用超环面网格滤波器估计相关角度

F. Pfaff, Kailai Li, U. Hanebeck
{"title":"利用超环面网格滤波器估计相关角度","authors":"F. Pfaff, Kailai Li, U. Hanebeck","doi":"10.1109/MFI49285.2020.9235220","DOIUrl":null,"url":null,"abstract":"Estimation for multiple correlated quantities generally requires considering a domain whose dimension is equal to the sum of the dimensions of the individual quantities. For multiple correlated angular quantities, considering a hyper-toroidal manifold may be required. Based on a Cartesian product of d equidistant one-dimensional grids for the unit circle, a grid for the d-dimensional hypertorus can be constructed. This grid is used for a novel filter. For n grid points, the update step is in O(n) for arbitrary likelihoods and the prediction step is in O(n2) for arbitrary transition densities. The run time of the latter can be reduced to O(n log n) for identity models with additive noise. In an evaluation scenario, the novel filter shows faster convergence than a particle filter for hypertoroidal domains and is on par with the recently proposed Fourier filters.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Estimating Correlated Angles Using the Hypertoroidal Grid Filter\",\"authors\":\"F. Pfaff, Kailai Li, U. Hanebeck\",\"doi\":\"10.1109/MFI49285.2020.9235220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation for multiple correlated quantities generally requires considering a domain whose dimension is equal to the sum of the dimensions of the individual quantities. For multiple correlated angular quantities, considering a hyper-toroidal manifold may be required. Based on a Cartesian product of d equidistant one-dimensional grids for the unit circle, a grid for the d-dimensional hypertorus can be constructed. This grid is used for a novel filter. For n grid points, the update step is in O(n) for arbitrary likelihoods and the prediction step is in O(n2) for arbitrary transition densities. The run time of the latter can be reduced to O(n log n) for identity models with additive noise. In an evaluation scenario, the novel filter shows faster convergence than a particle filter for hypertoroidal domains and is on par with the recently proposed Fourier filters.\",\"PeriodicalId\":446154,\"journal\":{\"name\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI49285.2020.9235220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对多个相关量的估计通常需要考虑一个维数等于单个量维数之和的域。对于多个相关角量,可能需要考虑超环面流形。基于单位圆的d等距一维网格的笛卡尔积,可以构造d维超环面的网格。该网格用于一种新型滤波器。对于n个网格点,对于任意似然,更新步长为O(n),对于任意过渡密度,预测步长为O(n2)。对于具有加性噪声的恒等模型,后者的运行时间可以减少到O(n log n)。在评估场景中,新型滤波器在超环面域表现出比粒子滤波器更快的收敛速度,并且与最近提出的傅里叶滤波器相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Correlated Angles Using the Hypertoroidal Grid Filter
Estimation for multiple correlated quantities generally requires considering a domain whose dimension is equal to the sum of the dimensions of the individual quantities. For multiple correlated angular quantities, considering a hyper-toroidal manifold may be required. Based on a Cartesian product of d equidistant one-dimensional grids for the unit circle, a grid for the d-dimensional hypertorus can be constructed. This grid is used for a novel filter. For n grid points, the update step is in O(n) for arbitrary likelihoods and the prediction step is in O(n2) for arbitrary transition densities. The run time of the latter can be reduced to O(n log n) for identity models with additive noise. In an evaluation scenario, the novel filter shows faster convergence than a particle filter for hypertoroidal domains and is on par with the recently proposed Fourier filters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信