分布式平均和最大化算法的收敛,第二部分:状态相关图

Guodong Shi, K. Johansson
{"title":"分布式平均和最大化算法的收敛,第二部分:状态相关图","authors":"Guodong Shi, K. Johansson","doi":"10.1109/ACC.2013.6580916","DOIUrl":null,"url":null,"abstract":"In this paper, we formulate and investigate a generalized consensus algorithm which makes an attempt to unify distributed averaging and maximizing algorithms considered in the literature. Each node iteratively updates its state as a time-varying weighted average of its own state, the minimal state, and the maximal state of its neighbors. In Part I of the paper, time-dependent graphs are studied. This part of the paper focuses on state-dependent graphs. We use a μ-nearest-neighbor rule, where each node interacts with its μ nearest smaller neighbors and the μ nearest larger neighbors. It is shown that μ+1 is a critical threshold on the total number of nodes for the transit from finite-time to asymptotic convergence for averaging, in the absence of node self-confidence. The threshold is 2μ if each node chooses to connect only to neighbors with unique values. The results characterize some similarities and differences between distributed averaging and maximizing algorithms.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Convergence of distributed averaging and maximizing algorithms Part II: State-dependent graphs\",\"authors\":\"Guodong Shi, K. Johansson\",\"doi\":\"10.1109/ACC.2013.6580916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we formulate and investigate a generalized consensus algorithm which makes an attempt to unify distributed averaging and maximizing algorithms considered in the literature. Each node iteratively updates its state as a time-varying weighted average of its own state, the minimal state, and the maximal state of its neighbors. In Part I of the paper, time-dependent graphs are studied. This part of the paper focuses on state-dependent graphs. We use a μ-nearest-neighbor rule, where each node interacts with its μ nearest smaller neighbors and the μ nearest larger neighbors. It is shown that μ+1 is a critical threshold on the total number of nodes for the transit from finite-time to asymptotic convergence for averaging, in the absence of node self-confidence. The threshold is 2μ if each node chooses to connect only to neighbors with unique values. The results characterize some similarities and differences between distributed averaging and maximizing algorithms.\",\"PeriodicalId\":145065,\"journal\":{\"name\":\"2013 American Control Conference\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2013.6580916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们提出并研究了一种广义一致性算法,它试图统一文献中考虑的分布式平均和最大化算法。每个节点迭代地更新其状态,作为其自身状态、最小状态和其邻居的最大状态的时变加权平均值。在论文的第一部分,研究了时间相关图。这一部分主要研究状态相关图。我们使用μ近邻规则,其中每个节点与其μ近邻的较小邻居和μ近邻的较大邻居相互作用。结果表明,在无节点自信的情况下,μ+1是节点总数的一个临界阈值,使算法从有限时间渐近收敛到平均。如果每个节点选择只连接具有唯一值的邻居,则阈值为2μ。结果描述了分布式平均算法和最大化算法之间的一些异同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of distributed averaging and maximizing algorithms Part II: State-dependent graphs
In this paper, we formulate and investigate a generalized consensus algorithm which makes an attempt to unify distributed averaging and maximizing algorithms considered in the literature. Each node iteratively updates its state as a time-varying weighted average of its own state, the minimal state, and the maximal state of its neighbors. In Part I of the paper, time-dependent graphs are studied. This part of the paper focuses on state-dependent graphs. We use a μ-nearest-neighbor rule, where each node interacts with its μ nearest smaller neighbors and the μ nearest larger neighbors. It is shown that μ+1 is a critical threshold on the total number of nodes for the transit from finite-time to asymptotic convergence for averaging, in the absence of node self-confidence. The threshold is 2μ if each node chooses to connect only to neighbors with unique values. The results characterize some similarities and differences between distributed averaging and maximizing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信