基于分层种群结构的交互式蝠鲼觅食优化算法

Tao Zheng, Kaiyu Wang, Jiayi Li, Yuki Todo, Shangce Gao
{"title":"基于分层种群结构的交互式蝠鲼觅食优化算法","authors":"Tao Zheng, Kaiyu Wang, Jiayi Li, Yuki Todo, Shangce Gao","doi":"10.1109/IHMSC55436.2022.00030","DOIUrl":null,"url":null,"abstract":"The manta ray foraging optimization (MRFO) algorithm is a meta-heuristic method derived by imitating the behavior inspired by manta rays foraging. However, due to the lack of communication among individuals in the population, it suffers from the local optimum trapping problem. In this study, we innovatively propose a hierarchical population structure for it by adding an information interaction layer to the original MRFO population, namely an interactive manta rays foraging optimization (IMRFO) algorithm. In it, the hierarchical population structure successfully realizes the balance between local exploitation and global exploration. The superiority of IMRFO is confirmed in terms of solution quality, convergence speed, population diversity, and search trajectory by experimental findings based on thirty IEEE CEC2017 benchmark functions in comparison with other state-of-the-art meta-heuristic methods.","PeriodicalId":447862,"journal":{"name":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Interactive Manta Ray Foraging Optimization Algorithm with Hierarchical Population Structure\",\"authors\":\"Tao Zheng, Kaiyu Wang, Jiayi Li, Yuki Todo, Shangce Gao\",\"doi\":\"10.1109/IHMSC55436.2022.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The manta ray foraging optimization (MRFO) algorithm is a meta-heuristic method derived by imitating the behavior inspired by manta rays foraging. However, due to the lack of communication among individuals in the population, it suffers from the local optimum trapping problem. In this study, we innovatively propose a hierarchical population structure for it by adding an information interaction layer to the original MRFO population, namely an interactive manta rays foraging optimization (IMRFO) algorithm. In it, the hierarchical population structure successfully realizes the balance between local exploitation and global exploration. The superiority of IMRFO is confirmed in terms of solution quality, convergence speed, population diversity, and search trajectory by experimental findings based on thirty IEEE CEC2017 benchmark functions in comparison with other state-of-the-art meta-heuristic methods.\",\"PeriodicalId\":447862,\"journal\":{\"name\":\"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC55436.2022.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC55436.2022.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蝠鲼觅食优化算法(MRFO)是一种模拟蝠鲼觅食行为的元启发式算法。然而,由于种群中个体之间缺乏交流,存在局部最优捕获问题。在本研究中,我们创新性地提出了一种分层种群结构,即交互式蝠鲼觅食优化(IMRFO)算法,在原有的MRFO种群基础上增加信息交互层。其中,分层人口结构成功地实现了局部开发与全局开发的平衡。通过基于IEEE CEC2017 30个基准函数的实验结果,验证了IMRFO算法在解质量、收敛速度、种群多样性和搜索轨迹等方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Interactive Manta Ray Foraging Optimization Algorithm with Hierarchical Population Structure
The manta ray foraging optimization (MRFO) algorithm is a meta-heuristic method derived by imitating the behavior inspired by manta rays foraging. However, due to the lack of communication among individuals in the population, it suffers from the local optimum trapping problem. In this study, we innovatively propose a hierarchical population structure for it by adding an information interaction layer to the original MRFO population, namely an interactive manta rays foraging optimization (IMRFO) algorithm. In it, the hierarchical population structure successfully realizes the balance between local exploitation and global exploration. The superiority of IMRFO is confirmed in terms of solution quality, convergence speed, population diversity, and search trajectory by experimental findings based on thirty IEEE CEC2017 benchmark functions in comparison with other state-of-the-art meta-heuristic methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信