使用人工神经网络、粒子群优化和自回归综合移动平均预测和可视化菲律宾的电力消耗

Nicole Anne C. Atienza, Jave Renzo Augustine T. Jao, Janica Arielle D.S. Angeles, Ernersto Lance T. Singzon, Donata D. Acula
{"title":"使用人工神经网络、粒子群优化和自回归综合移动平均预测和可视化菲律宾的电力消耗","authors":"Nicole Anne C. Atienza, Jave Renzo Augustine T. Jao, Janica Arielle D.S. Angeles, Ernersto Lance T. Singzon, Donata D. Acula","doi":"10.1109/CCOMS.2018.8463351","DOIUrl":null,"url":null,"abstract":"Electricity is vital in the development of a country like the Philippines. The researchers of the study developed a long-term prediction model to predict and visualize the regional electricity consumption in the Philippines through implementing Particle Swarm Optimization (PSO) instead of Backpropagation (BP) to train the Artificial Neural Networks (ANN) and implementing Autoregressive Integrated Moving Average (ARIMA) to forecast future predictors. The average prediction accuracy of BP-ANN is 85.95% while the average prediction accuracy of PSO-ANN is 92.40%. Moreover, the average accuracy of PSO-ANN and ARIMA is 96.05%. The results indicated that PSO-ANN is a better prediction model than BP-ANN and that ARIMA performed well in forecasting the future predictors. The study can be of great help to improve the electricity allocation in the Philippines.","PeriodicalId":405664,"journal":{"name":"2018 3rd International Conference on Computer and Communication Systems (ICCCS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prediction and Visualization of Electricity Consumption in the Philippines Using Artificial Neural Networks, Particle Swarm Optimization, and Autoregressive Integrated Moving Average\",\"authors\":\"Nicole Anne C. Atienza, Jave Renzo Augustine T. Jao, Janica Arielle D.S. Angeles, Ernersto Lance T. Singzon, Donata D. Acula\",\"doi\":\"10.1109/CCOMS.2018.8463351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity is vital in the development of a country like the Philippines. The researchers of the study developed a long-term prediction model to predict and visualize the regional electricity consumption in the Philippines through implementing Particle Swarm Optimization (PSO) instead of Backpropagation (BP) to train the Artificial Neural Networks (ANN) and implementing Autoregressive Integrated Moving Average (ARIMA) to forecast future predictors. The average prediction accuracy of BP-ANN is 85.95% while the average prediction accuracy of PSO-ANN is 92.40%. Moreover, the average accuracy of PSO-ANN and ARIMA is 96.05%. The results indicated that PSO-ANN is a better prediction model than BP-ANN and that ARIMA performed well in forecasting the future predictors. The study can be of great help to improve the electricity allocation in the Philippines.\",\"PeriodicalId\":405664,\"journal\":{\"name\":\"2018 3rd International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCOMS.2018.8463351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCOMS.2018.8463351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

电力对菲律宾这样的国家的发展至关重要。该研究的研究人员开发了一个长期预测模型,通过实施粒子群优化(PSO)而不是反向传播(BP)来训练人工神经网络(ANN),并实施自回归综合移动平均(ARIMA)来预测未来的预测者,从而预测和可视化菲律宾的区域电力消耗。BP-ANN的平均预测准确率为85.95%,PSO-ANN的平均预测准确率为92.40%。PSO-ANN和ARIMA的平均准确率为96.05%。结果表明,PSO-ANN是比BP-ANN更好的预测模型,ARIMA在预测未来预测因子方面表现良好。该研究对改善菲律宾的电力分配有很大的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction and Visualization of Electricity Consumption in the Philippines Using Artificial Neural Networks, Particle Swarm Optimization, and Autoregressive Integrated Moving Average
Electricity is vital in the development of a country like the Philippines. The researchers of the study developed a long-term prediction model to predict and visualize the regional electricity consumption in the Philippines through implementing Particle Swarm Optimization (PSO) instead of Backpropagation (BP) to train the Artificial Neural Networks (ANN) and implementing Autoregressive Integrated Moving Average (ARIMA) to forecast future predictors. The average prediction accuracy of BP-ANN is 85.95% while the average prediction accuracy of PSO-ANN is 92.40%. Moreover, the average accuracy of PSO-ANN and ARIMA is 96.05%. The results indicated that PSO-ANN is a better prediction model than BP-ANN and that ARIMA performed well in forecasting the future predictors. The study can be of great help to improve the electricity allocation in the Philippines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信