{"title":"一种用于液体推进剂火箭发动机腔室的再生冷却系统,冷却剂通过金属网在通道间流动","authors":"F. Pelevin, A. Ponomarev","doi":"10.33950/SPACETECH-2308-7625-2020-4-65-77","DOIUrl":null,"url":null,"abstract":"The paper discusses a new method for regenerative cooling of the chamber of liquid-propellant rocket engines using the concept of interchannel coolant flow through a porous metal mesh made by vacuum diffusion welding of woven metal netting. It provides a theoretical rationale for switching from unidimensional (longitudinally channeled) flow to two-dimensional (interchannel) inter-mesh flow coolant through a porous mesh. It provides experimental data for hydraulic resistance and heat exchange in porous metal meshes. Based on the experimental data, a generalized criterial equation was obtained for surface heat release in the paths with interchannel two-dimensional intermesh coolant flow through metal mesh. The paper examines the efficiency of heat exchange in the paths with interchannel coolant flow.\nKey words: regenerative cooling, interchannel flow; vacuum diffusion technology, metal mesh; hydraulic resistance; heat exchange, heat exchange efficiency.","PeriodicalId":384878,"journal":{"name":"Space engineering and technology","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A regenerative cooling system for the chamber of a liquid-propellant rocket engine with interchannel coolant flow through a metal mesh\",\"authors\":\"F. Pelevin, A. Ponomarev\",\"doi\":\"10.33950/SPACETECH-2308-7625-2020-4-65-77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper discusses a new method for regenerative cooling of the chamber of liquid-propellant rocket engines using the concept of interchannel coolant flow through a porous metal mesh made by vacuum diffusion welding of woven metal netting. It provides a theoretical rationale for switching from unidimensional (longitudinally channeled) flow to two-dimensional (interchannel) inter-mesh flow coolant through a porous mesh. It provides experimental data for hydraulic resistance and heat exchange in porous metal meshes. Based on the experimental data, a generalized criterial equation was obtained for surface heat release in the paths with interchannel two-dimensional intermesh coolant flow through metal mesh. The paper examines the efficiency of heat exchange in the paths with interchannel coolant flow.\\nKey words: regenerative cooling, interchannel flow; vacuum diffusion technology, metal mesh; hydraulic resistance; heat exchange, heat exchange efficiency.\",\"PeriodicalId\":384878,\"journal\":{\"name\":\"Space engineering and technology\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space engineering and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33950/SPACETECH-2308-7625-2020-4-65-77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space engineering and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33950/SPACETECH-2308-7625-2020-4-65-77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A regenerative cooling system for the chamber of a liquid-propellant rocket engine with interchannel coolant flow through a metal mesh
The paper discusses a new method for regenerative cooling of the chamber of liquid-propellant rocket engines using the concept of interchannel coolant flow through a porous metal mesh made by vacuum diffusion welding of woven metal netting. It provides a theoretical rationale for switching from unidimensional (longitudinally channeled) flow to two-dimensional (interchannel) inter-mesh flow coolant through a porous mesh. It provides experimental data for hydraulic resistance and heat exchange in porous metal meshes. Based on the experimental data, a generalized criterial equation was obtained for surface heat release in the paths with interchannel two-dimensional intermesh coolant flow through metal mesh. The paper examines the efficiency of heat exchange in the paths with interchannel coolant flow.
Key words: regenerative cooling, interchannel flow; vacuum diffusion technology, metal mesh; hydraulic resistance; heat exchange, heat exchange efficiency.