数字地下:将石油地球科学与数据科学原理相结合,创建智能地下平台

B. Alaei, S. Purves, E. Larsen, D. Economou, D. Austin
{"title":"数字地下:将石油地球科学与数据科学原理相结合,创建智能地下平台","authors":"B. Alaei, S. Purves, E. Larsen, D. Economou, D. Austin","doi":"10.3997/2214-4609.2019X610110","DOIUrl":null,"url":null,"abstract":"Summary The history of hydrocarbon exploration consistently indicates the advantages of integrating knowledge and data derived from different disciplines such as basin modelling, structural geology and geophysics. We have designed a complete subsurface workflow or platform, that we call Digital Underground. It combines semi-automated data wrangling, highly accessible structured analytics ready data in large databases, direct integration of data analytics and machine learning technology, tracking of data provenance, enabling reproducible scientific workflows, and the practical use of ML methods by the geoscientist in making their decisions. The workflow uses ML approaches at different scales, from core to seismic, and basin to prospect scale; while providing dynamic access to large amounts of data throughout. The workflow includes four main stages starting with well data analysis and ending up in integration of data-driven distributions of different properties required for risk and volumetric estimations together with corresponding uncertainties. We have shown the advantage of the platform by testing it on several examples. ML technology paired with solid data science practice; facilitates the integration of data and disciplines, enables geoscientists to exceed current best practice with the ML tools, and paves the way to the \"new\" best practice which is integrated data science and geoscience.","PeriodicalId":369295,"journal":{"name":"EAGE Subsurface Intelligence Workshop","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Digital Underground: Integrating petroleum geoscience with data science principles to create an intelligent subsurface platform\",\"authors\":\"B. Alaei, S. Purves, E. Larsen, D. Economou, D. Austin\",\"doi\":\"10.3997/2214-4609.2019X610110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The history of hydrocarbon exploration consistently indicates the advantages of integrating knowledge and data derived from different disciplines such as basin modelling, structural geology and geophysics. We have designed a complete subsurface workflow or platform, that we call Digital Underground. It combines semi-automated data wrangling, highly accessible structured analytics ready data in large databases, direct integration of data analytics and machine learning technology, tracking of data provenance, enabling reproducible scientific workflows, and the practical use of ML methods by the geoscientist in making their decisions. The workflow uses ML approaches at different scales, from core to seismic, and basin to prospect scale; while providing dynamic access to large amounts of data throughout. The workflow includes four main stages starting with well data analysis and ending up in integration of data-driven distributions of different properties required for risk and volumetric estimations together with corresponding uncertainties. We have shown the advantage of the platform by testing it on several examples. ML technology paired with solid data science practice; facilitates the integration of data and disciplines, enables geoscientists to exceed current best practice with the ML tools, and paves the way to the \\\"new\\\" best practice which is integrated data science and geoscience.\",\"PeriodicalId\":369295,\"journal\":{\"name\":\"EAGE Subsurface Intelligence Workshop\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAGE Subsurface Intelligence Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.2019X610110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAGE Subsurface Intelligence Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.2019X610110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

油气勘探的历史表明,整合不同学科的知识和数据具有优势,如盆地建模、构造地质学和地球物理学。我们已经设计了一个完整的地下工作流程或平台,我们称之为数字地下。它结合了半自动数据整理、大型数据库中高度可访问的结构化分析就绪数据、数据分析和机器学习技术的直接集成、数据来源的跟踪、可重复的科学工作流程,以及地球科学家在做出决策时实际使用ML方法。该工作流程在不同的尺度上使用ML方法,从岩心到地震,从盆地到勘探范围;同时提供对大量数据的动态访问。该工作流程包括四个主要阶段,从井数据分析开始,到整合风险和体积估算所需的不同属性的数据驱动分布以及相应的不确定性。通过在几个示例上进行测试,我们展示了该平台的优势。机器学习技术与扎实的数据科学实践相结合;它促进了数据和学科的整合,使地球科学家能够使用ML工具超越当前的最佳实践,并为整合数据科学和地球科学的“新”最佳实践铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Digital Underground: Integrating petroleum geoscience with data science principles to create an intelligent subsurface platform
Summary The history of hydrocarbon exploration consistently indicates the advantages of integrating knowledge and data derived from different disciplines such as basin modelling, structural geology and geophysics. We have designed a complete subsurface workflow or platform, that we call Digital Underground. It combines semi-automated data wrangling, highly accessible structured analytics ready data in large databases, direct integration of data analytics and machine learning technology, tracking of data provenance, enabling reproducible scientific workflows, and the practical use of ML methods by the geoscientist in making their decisions. The workflow uses ML approaches at different scales, from core to seismic, and basin to prospect scale; while providing dynamic access to large amounts of data throughout. The workflow includes four main stages starting with well data analysis and ending up in integration of data-driven distributions of different properties required for risk and volumetric estimations together with corresponding uncertainties. We have shown the advantage of the platform by testing it on several examples. ML technology paired with solid data science practice; facilitates the integration of data and disciplines, enables geoscientists to exceed current best practice with the ML tools, and paves the way to the "new" best practice which is integrated data science and geoscience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信