计算对称结构高阶Hadamard矩阵的Scarpi方法实现分析

A. Sergeev
{"title":"计算对称结构高阶Hadamard矩阵的Scarpi方法实现分析","authors":"A. Sergeev","doi":"10.47813/dnit-nto.2021.104-110","DOIUrl":null,"url":null,"abstract":"An analysis of three modifications of the Scarpi method is given in order to assess their applicability to calculating Hadamard matrices of high orders with structural symmetries. Descriptions of modifications are presented, the results of Hadamard matrix calculation are demonstrated, confirming the conclusion about the significance of the Balonin-Seberry modification. The computational experiment shows that there are no results refuting the existence of matrices symmetric structures calculated by the Balonin-Seberry modification.","PeriodicalId":129969,"journal":{"name":"Science, technology, society - NTO-2021: proceedings of the All-Russian Scientific Conference","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of implementations of the Scarpi method for calculating high orders Hadamard matrices of symmetric structures\",\"authors\":\"A. Sergeev\",\"doi\":\"10.47813/dnit-nto.2021.104-110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analysis of three modifications of the Scarpi method is given in order to assess their applicability to calculating Hadamard matrices of high orders with structural symmetries. Descriptions of modifications are presented, the results of Hadamard matrix calculation are demonstrated, confirming the conclusion about the significance of the Balonin-Seberry modification. The computational experiment shows that there are no results refuting the existence of matrices symmetric structures calculated by the Balonin-Seberry modification.\",\"PeriodicalId\":129969,\"journal\":{\"name\":\"Science, technology, society - NTO-2021: proceedings of the All-Russian Scientific Conference\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science, technology, society - NTO-2021: proceedings of the All-Russian Scientific Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47813/dnit-nto.2021.104-110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science, technology, society - NTO-2021: proceedings of the All-Russian Scientific Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47813/dnit-nto.2021.104-110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析了Scarpi法的三种修正,以评价其在计算具有结构对称性的高阶Hadamard矩阵时的适用性。给出了修饰的描述,并对Hadamard矩阵的计算结果进行了验证,证实了Balonin-Seberry修饰的重要性。计算实验表明,并没有否定Balonin-Seberry修正计算的矩阵对称结构存在性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of implementations of the Scarpi method for calculating high orders Hadamard matrices of symmetric structures
An analysis of three modifications of the Scarpi method is given in order to assess their applicability to calculating Hadamard matrices of high orders with structural symmetries. Descriptions of modifications are presented, the results of Hadamard matrix calculation are demonstrated, confirming the conclusion about the significance of the Balonin-Seberry modification. The computational experiment shows that there are no results refuting the existence of matrices symmetric structures calculated by the Balonin-Seberry modification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信