{"title":"压缩机性能,绝对!","authors":"M. Titchener","doi":"10.1109/DCC.2002.1000017","DOIUrl":null,"url":null,"abstract":"Summary form only given. Titchener (see Proc. DCC00, IEEE Society Press, p.353-62, 2000, and IEEE-ISIT, , MIT, Boston, August 1998) defined a computable grammar-based entropy measure (T-entropy) for finite strings, Ebeling, Steuer and Titchener (see Stochastics and Dynamics, vol.1, no.1, 2000) and Titchener and Ebeling (see Proc. DCC01, IEEE Society Press, p.520, 2001) demonstrated against the known results for the logistic map, to be a practical way to compute the Shannon information content for data files. A range of binary encodings of the logistic map dynamics have been prepared from a generating bi-partition and with selected normalised entropies, 0.1-1.0 bits/symbol, in steps of 0.1. This corpus of ten test files has been used to evaluate the 'absolute' performance of a series of popular compressors.","PeriodicalId":420897,"journal":{"name":"Proceedings DCC 2002. Data Compression Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Compressor performance, absolutely!\",\"authors\":\"M. Titchener\",\"doi\":\"10.1109/DCC.2002.1000017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Titchener (see Proc. DCC00, IEEE Society Press, p.353-62, 2000, and IEEE-ISIT, , MIT, Boston, August 1998) defined a computable grammar-based entropy measure (T-entropy) for finite strings, Ebeling, Steuer and Titchener (see Stochastics and Dynamics, vol.1, no.1, 2000) and Titchener and Ebeling (see Proc. DCC01, IEEE Society Press, p.520, 2001) demonstrated against the known results for the logistic map, to be a practical way to compute the Shannon information content for data files. A range of binary encodings of the logistic map dynamics have been prepared from a generating bi-partition and with selected normalised entropies, 0.1-1.0 bits/symbol, in steps of 0.1. This corpus of ten test files has been used to evaluate the 'absolute' performance of a series of popular compressors.\",\"PeriodicalId\":420897,\"journal\":{\"name\":\"Proceedings DCC 2002. Data Compression Conference\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC 2002. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2002.1000017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC 2002. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2002.1000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
只提供摘要形式。Titchener(参见Proc. DCC00, IEEE Society Press, p.353-62, 2000, IEEE- isit,麻省理工学院,波士顿,1998年8月)为有限字符串定义了一个可计算的基于语法的熵测度(t -熵),Ebeling, Steuer和Titchener(参见《随机与动力学》,vol.1, no. 1)。1, 2000)和Titchener和Ebeling(见Proc. DCC01, IEEE Society Press, p.520, 2001)针对逻辑图的已知结果证明,这是计算数据文件香农信息内容的实用方法。逻辑映射动力学的一系列二进制编码已经从生成的双分区和选择的归一化熵中准备好,0.1-1.0比特/符号,步骤为0.1。这个由十个测试文件组成的语料库已被用于评估一系列流行压缩器的“绝对”性能。
Summary form only given. Titchener (see Proc. DCC00, IEEE Society Press, p.353-62, 2000, and IEEE-ISIT, , MIT, Boston, August 1998) defined a computable grammar-based entropy measure (T-entropy) for finite strings, Ebeling, Steuer and Titchener (see Stochastics and Dynamics, vol.1, no.1, 2000) and Titchener and Ebeling (see Proc. DCC01, IEEE Society Press, p.520, 2001) demonstrated against the known results for the logistic map, to be a practical way to compute the Shannon information content for data files. A range of binary encodings of the logistic map dynamics have been prepared from a generating bi-partition and with selected normalised entropies, 0.1-1.0 bits/symbol, in steps of 0.1. This corpus of ten test files has been used to evaluate the 'absolute' performance of a series of popular compressors.