{"title":"近数据处理:3D存储系统架构对Uncore的影响与优化","authors":"S. M. Hassan, S. Yalamanchili, S. Mukhopadhyay","doi":"10.1145/2818950.2818952","DOIUrl":null,"url":null,"abstract":"A promising recent development that can provide continued scaling of performance is the ability to stack multiple DRAM layers on a multi-core processor die. This paper analyzes the interaction between the interconnection network and the memory hierarchy in such systems, and its impact on system performance. We explore the design considerations of a 3D system with DRAM-on-processor stacking and note that full advantages of 3D can only be achieved by configuring the memory with high number of channels. This significantly increases memory level parallelism which results in decreasing the traffic per DRAM bank, reducing their queuing delays, but increasing it on the interconnection network, making remote accesses expensive. To reduce the latency and traffic on the network, we propose restructuring the memory hierarchy to a memory-side cache organization and also explore the effects of various address translations and OS page allocation strategies. Our results indicate that a carefully designed 3D memory system can already improve performance by 25-35% without looking towards new sophisticated techniques.","PeriodicalId":389462,"journal":{"name":"Proceedings of the 2015 International Symposium on Memory Systems","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Near Data Processing: Impact and Optimization of 3D Memory System Architecture on the Uncore\",\"authors\":\"S. M. Hassan, S. Yalamanchili, S. Mukhopadhyay\",\"doi\":\"10.1145/2818950.2818952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A promising recent development that can provide continued scaling of performance is the ability to stack multiple DRAM layers on a multi-core processor die. This paper analyzes the interaction between the interconnection network and the memory hierarchy in such systems, and its impact on system performance. We explore the design considerations of a 3D system with DRAM-on-processor stacking and note that full advantages of 3D can only be achieved by configuring the memory with high number of channels. This significantly increases memory level parallelism which results in decreasing the traffic per DRAM bank, reducing their queuing delays, but increasing it on the interconnection network, making remote accesses expensive. To reduce the latency and traffic on the network, we propose restructuring the memory hierarchy to a memory-side cache organization and also explore the effects of various address translations and OS page allocation strategies. Our results indicate that a carefully designed 3D memory system can already improve performance by 25-35% without looking towards new sophisticated techniques.\",\"PeriodicalId\":389462,\"journal\":{\"name\":\"Proceedings of the 2015 International Symposium on Memory Systems\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Symposium on Memory Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818950.2818952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Symposium on Memory Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818950.2818952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Near Data Processing: Impact and Optimization of 3D Memory System Architecture on the Uncore
A promising recent development that can provide continued scaling of performance is the ability to stack multiple DRAM layers on a multi-core processor die. This paper analyzes the interaction between the interconnection network and the memory hierarchy in such systems, and its impact on system performance. We explore the design considerations of a 3D system with DRAM-on-processor stacking and note that full advantages of 3D can only be achieved by configuring the memory with high number of channels. This significantly increases memory level parallelism which results in decreasing the traffic per DRAM bank, reducing their queuing delays, but increasing it on the interconnection network, making remote accesses expensive. To reduce the latency and traffic on the network, we propose restructuring the memory hierarchy to a memory-side cache organization and also explore the effects of various address translations and OS page allocation strategies. Our results indicate that a carefully designed 3D memory system can already improve performance by 25-35% without looking towards new sophisticated techniques.