{"title":"基于神经网络的肌肉抽动反应分类:在多垫电极优化中的应用","authors":"N. Malešević, L. Popovic, G. Bijelic, G. Kvascev","doi":"10.1109/NEUREL.2010.5644042","DOIUrl":null,"url":null,"abstract":"In this paper we present a method for optimization of spatial selectivity of multi-pad electrode during transcutaneous Functional Electrical Stimulation (FES). The presented method is based on measurent of individual muscle twitches using Micro-Electro-Mechanical Systems (MEMS) accelerometers positioned on hand, while stimulating with low frequency electrical stimulation via pads within multi-pad electrode. When elicited, wrist or fingers flexion/extension produce different, characteristic wave shapes of acceleration, by using trained Artificial Neural Network (ANN) we can detect these characteristic signals and detect correlation of each pad and activated muscle beneath. Results presented in this paper show high degree of accurate classification of the elicited movement in inter-subject testing.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Classification of muscle twitch response using ANN: Application in multi-pad electrode optimization\",\"authors\":\"N. Malešević, L. Popovic, G. Bijelic, G. Kvascev\",\"doi\":\"10.1109/NEUREL.2010.5644042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a method for optimization of spatial selectivity of multi-pad electrode during transcutaneous Functional Electrical Stimulation (FES). The presented method is based on measurent of individual muscle twitches using Micro-Electro-Mechanical Systems (MEMS) accelerometers positioned on hand, while stimulating with low frequency electrical stimulation via pads within multi-pad electrode. When elicited, wrist or fingers flexion/extension produce different, characteristic wave shapes of acceleration, by using trained Artificial Neural Network (ANN) we can detect these characteristic signals and detect correlation of each pad and activated muscle beneath. Results presented in this paper show high degree of accurate classification of the elicited movement in inter-subject testing.\",\"PeriodicalId\":227890,\"journal\":{\"name\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2010.5644042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of muscle twitch response using ANN: Application in multi-pad electrode optimization
In this paper we present a method for optimization of spatial selectivity of multi-pad electrode during transcutaneous Functional Electrical Stimulation (FES). The presented method is based on measurent of individual muscle twitches using Micro-Electro-Mechanical Systems (MEMS) accelerometers positioned on hand, while stimulating with low frequency electrical stimulation via pads within multi-pad electrode. When elicited, wrist or fingers flexion/extension produce different, characteristic wave shapes of acceleration, by using trained Artificial Neural Network (ANN) we can detect these characteristic signals and detect correlation of each pad and activated muscle beneath. Results presented in this paper show high degree of accurate classification of the elicited movement in inter-subject testing.