利用图神经网络推进物理设计(特邀论文)

Yi-Chen Lu, S. Lim
{"title":"利用图神经网络推进物理设计(特邀论文)","authors":"Yi-Chen Lu, S. Lim","doi":"10.1145/3508352.3561094","DOIUrl":null,"url":null,"abstract":"As modern Physical Design (PD) algorithms and methodologies evolve into the post-Moore era with the aid of machine learning, Graph Neural Networks (GNNs) are becoming increasingly ubiquitous given that netlists are essentially graphs. Recently, their ability to perform effective graph learning has provided significant insights to understand the underlying dynamics during netlist-to-layout transformations. GNNs follow a message-passing scheme, where the goal is to construct meaningful representations either at the entire graph or node-level by recursively aggregating and transforming the initial features. In the realm of PD, the GNN-learned representations have been leveraged to solve the tasks such as cell clustering, quality-of-result prediction, activity simulation, etc., which often overcome the limitations of traditional PD algorithms. In this work, we first revisit recent advancements that GNNs have made in PD. Second, we discuss how GNNs serve as the backbone of novel PD flows. Finally, we present our thoughts on ongoing and future PD challenges that GNNs can tackle and succeed.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Advancing Physical Design using Graph Neural Networks (Invited Paper)\",\"authors\":\"Yi-Chen Lu, S. Lim\",\"doi\":\"10.1145/3508352.3561094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As modern Physical Design (PD) algorithms and methodologies evolve into the post-Moore era with the aid of machine learning, Graph Neural Networks (GNNs) are becoming increasingly ubiquitous given that netlists are essentially graphs. Recently, their ability to perform effective graph learning has provided significant insights to understand the underlying dynamics during netlist-to-layout transformations. GNNs follow a message-passing scheme, where the goal is to construct meaningful representations either at the entire graph or node-level by recursively aggregating and transforming the initial features. In the realm of PD, the GNN-learned representations have been leveraged to solve the tasks such as cell clustering, quality-of-result prediction, activity simulation, etc., which often overcome the limitations of traditional PD algorithms. In this work, we first revisit recent advancements that GNNs have made in PD. Second, we discuss how GNNs serve as the backbone of novel PD flows. Finally, we present our thoughts on ongoing and future PD challenges that GNNs can tackle and succeed.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3561094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3561094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着现代物理设计(PD)算法和方法在机器学习的帮助下发展到后摩尔时代,图神经网络(gnn)变得越来越普遍,因为网络列表本质上是图。最近,他们执行有效图学习的能力为理解网络列表到布局转换过程中的潜在动态提供了重要的见解。gnn遵循消息传递方案,其目标是通过递归聚合和转换初始特征,在整个图或节点级构建有意义的表示。在PD领域,利用gnn学习的表示来解决诸如细胞聚类、结果质量预测、活动模拟等任务,这些任务通常克服了传统PD算法的局限性。在这项工作中,我们首先回顾了gnn在PD中取得的最新进展。其次,我们讨论了gnn如何作为新型PD流的支柱。最后,我们提出了关于gnn可以解决并取得成功的当前和未来PD挑战的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Advancing Physical Design using Graph Neural Networks (Invited Paper)
As modern Physical Design (PD) algorithms and methodologies evolve into the post-Moore era with the aid of machine learning, Graph Neural Networks (GNNs) are becoming increasingly ubiquitous given that netlists are essentially graphs. Recently, their ability to perform effective graph learning has provided significant insights to understand the underlying dynamics during netlist-to-layout transformations. GNNs follow a message-passing scheme, where the goal is to construct meaningful representations either at the entire graph or node-level by recursively aggregating and transforming the initial features. In the realm of PD, the GNN-learned representations have been leveraged to solve the tasks such as cell clustering, quality-of-result prediction, activity simulation, etc., which often overcome the limitations of traditional PD algorithms. In this work, we first revisit recent advancements that GNNs have made in PD. Second, we discuss how GNNs serve as the backbone of novel PD flows. Finally, we present our thoughts on ongoing and future PD challenges that GNNs can tackle and succeed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信