{"title":"维生素D代谢","authors":"S. Acar, B. Ozkan","doi":"10.5772/INTECHOPEN.97180","DOIUrl":null,"url":null,"abstract":"Vitamin D plays an important role in bone metabolism. Vitamin D is a group of biologically inactive, fat-soluble prohormones that exist in two major forms: ergocalciferol (vitamin D2) produced by plants in response to ultraviolet irradiation and cholecalciferol (vitamin D3) derived from animal tissues or 7-dehydrocholesterol in human skin by the action of ultraviolet rays present in sunlight. Vitamin D, which is biologically inactive, needs two-step hydroxylation for activation. All of these steps are of crucial for Vitamin D to show its effect properly. In this section, we will present vitamin D synthesis and its action steps in detail.","PeriodicalId":117807,"journal":{"name":"Vitamin D [Working Title]","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vitamin D Metabolism\",\"authors\":\"S. Acar, B. Ozkan\",\"doi\":\"10.5772/INTECHOPEN.97180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vitamin D plays an important role in bone metabolism. Vitamin D is a group of biologically inactive, fat-soluble prohormones that exist in two major forms: ergocalciferol (vitamin D2) produced by plants in response to ultraviolet irradiation and cholecalciferol (vitamin D3) derived from animal tissues or 7-dehydrocholesterol in human skin by the action of ultraviolet rays present in sunlight. Vitamin D, which is biologically inactive, needs two-step hydroxylation for activation. All of these steps are of crucial for Vitamin D to show its effect properly. In this section, we will present vitamin D synthesis and its action steps in detail.\",\"PeriodicalId\":117807,\"journal\":{\"name\":\"Vitamin D [Working Title]\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vitamin D [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.97180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitamin D [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.97180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vitamin D plays an important role in bone metabolism. Vitamin D is a group of biologically inactive, fat-soluble prohormones that exist in two major forms: ergocalciferol (vitamin D2) produced by plants in response to ultraviolet irradiation and cholecalciferol (vitamin D3) derived from animal tissues or 7-dehydrocholesterol in human skin by the action of ultraviolet rays present in sunlight. Vitamin D, which is biologically inactive, needs two-step hydroxylation for activation. All of these steps are of crucial for Vitamin D to show its effect properly. In this section, we will present vitamin D synthesis and its action steps in detail.