人类住区高光谱图像非线性混合效应研究

A. Marinoni, P. Gamba
{"title":"人类住区高光谱图像非线性混合效应研究","authors":"A. Marinoni, P. Gamba","doi":"10.1109/JURSE.2015.7120484","DOIUrl":null,"url":null,"abstract":"In this paper, the nonlinear contribution of human settlements to mixture in hyperspectral images is investigated. Specifically, a method that aims to efficiently evaluate and estimate the extent of urban areas by taking advantage of the results provided by polynomial nonlinear unmixing based on polytope decomposition is proposed. Tests over real images shows how the proposed scheme can actually highlight anthropogenic extents over geometrically complex scenarios.","PeriodicalId":207233,"journal":{"name":"2015 Joint Urban Remote Sensing Event (JURSE)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the effect of nonlinear mixing in hyperspectral images of human settlements\",\"authors\":\"A. Marinoni, P. Gamba\",\"doi\":\"10.1109/JURSE.2015.7120484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the nonlinear contribution of human settlements to mixture in hyperspectral images is investigated. Specifically, a method that aims to efficiently evaluate and estimate the extent of urban areas by taking advantage of the results provided by polynomial nonlinear unmixing based on polytope decomposition is proposed. Tests over real images shows how the proposed scheme can actually highlight anthropogenic extents over geometrically complex scenarios.\",\"PeriodicalId\":207233,\"journal\":{\"name\":\"2015 Joint Urban Remote Sensing Event (JURSE)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Joint Urban Remote Sensing Event (JURSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JURSE.2015.7120484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Joint Urban Remote Sensing Event (JURSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JURSE.2015.7120484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了人类住区对高光谱图像混合的非线性贡献。具体而言,提出了一种利用基于多面体分解的多项式非线性解混结果高效评价和估计城市面积的方法。对真实图像的测试表明,所提出的方案实际上可以在几何复杂的情况下突出人类活动的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the effect of nonlinear mixing in hyperspectral images of human settlements
In this paper, the nonlinear contribution of human settlements to mixture in hyperspectral images is investigated. Specifically, a method that aims to efficiently evaluate and estimate the extent of urban areas by taking advantage of the results provided by polynomial nonlinear unmixing based on polytope decomposition is proposed. Tests over real images shows how the proposed scheme can actually highlight anthropogenic extents over geometrically complex scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信