{"title":"医学体绘制nerf的指导训练","authors":"Kaloian Petkov","doi":"10.1145/3588028.3603657","DOIUrl":null,"url":null,"abstract":"Neural Radiance Fields (NeRF) trained on pre-rendered photorealistic images represent complex medical data in a fraction of the size, while interactive applications synthesize novel views directly from the neural networks. We demonstrate a practical implementation of NeRFs for high resolution CT volume data, using differentiable rendering for training view selection.","PeriodicalId":113397,"journal":{"name":"ACM SIGGRAPH 2023 Posters","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guided Training of NeRFs for Medical Volume Rendering\",\"authors\":\"Kaloian Petkov\",\"doi\":\"10.1145/3588028.3603657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural Radiance Fields (NeRF) trained on pre-rendered photorealistic images represent complex medical data in a fraction of the size, while interactive applications synthesize novel views directly from the neural networks. We demonstrate a practical implementation of NeRFs for high resolution CT volume data, using differentiable rendering for training view selection.\",\"PeriodicalId\":113397,\"journal\":{\"name\":\"ACM SIGGRAPH 2023 Posters\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2023 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3588028.3603657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2023 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3588028.3603657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Guided Training of NeRFs for Medical Volume Rendering
Neural Radiance Fields (NeRF) trained on pre-rendered photorealistic images represent complex medical data in a fraction of the size, while interactive applications synthesize novel views directly from the neural networks. We demonstrate a practical implementation of NeRFs for high resolution CT volume data, using differentiable rendering for training view selection.