雅可比MIMO信道:实现无中断的承诺

R. Dar, M. Feder, M. Shtaif
{"title":"雅可比MIMO信道:实现无中断的承诺","authors":"R. Dar, M. Feder, M. Shtaif","doi":"10.1109/EEEI.2012.6376939","DOIUrl":null,"url":null,"abstract":"In the Jacobi fading model H, the transfer matrix which couples the mt inputs into mr outputs, is a sub-matrix of an m × m random (Haar-distributed) unitary matrix. The (squared) singular values of H follow the law of the classical Jacobi ensemble of random matrices. In the case where the model parameters satisfy k = mt + mr - m >; 0, at least k singular values are guaranteed not to fade for any channel realization, enabling an achievable zero outage probability at the corresponding rates. A simple scheme utilizing (a possibly outdated) channel state feedback is provided, attaining the no-outage promise.","PeriodicalId":177385,"journal":{"name":"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel","volume":"85 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Jacobi MIMO channel: Achieving the no-outage promise\",\"authors\":\"R. Dar, M. Feder, M. Shtaif\",\"doi\":\"10.1109/EEEI.2012.6376939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Jacobi fading model H, the transfer matrix which couples the mt inputs into mr outputs, is a sub-matrix of an m × m random (Haar-distributed) unitary matrix. The (squared) singular values of H follow the law of the classical Jacobi ensemble of random matrices. In the case where the model parameters satisfy k = mt + mr - m >; 0, at least k singular values are guaranteed not to fade for any channel realization, enabling an achievable zero outage probability at the corresponding rates. A simple scheme utilizing (a possibly outdated) channel state feedback is provided, attaining the no-outage promise.\",\"PeriodicalId\":177385,\"journal\":{\"name\":\"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel\",\"volume\":\"85 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEI.2012.6376939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEI.2012.6376939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在Jacobi衰落模型H中,将mt输入耦合到mr输出的传递矩阵是m × m随机(haar分布)酉矩阵的子矩阵。H的(平方)奇异值遵循随机矩阵的经典雅可比系综定律。当模型参数满足k = mt + mr - m >;对于任何信道实现,保证至少k个奇异值不会褪色,从而在相应的速率下实现可实现的零中断概率。提供了一个利用(可能过时的)通道状态反馈的简单方案,实现了无中断的承诺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Jacobi MIMO channel: Achieving the no-outage promise
In the Jacobi fading model H, the transfer matrix which couples the mt inputs into mr outputs, is a sub-matrix of an m × m random (Haar-distributed) unitary matrix. The (squared) singular values of H follow the law of the classical Jacobi ensemble of random matrices. In the case where the model parameters satisfy k = mt + mr - m >; 0, at least k singular values are guaranteed not to fade for any channel realization, enabling an achievable zero outage probability at the corresponding rates. A simple scheme utilizing (a possibly outdated) channel state feedback is provided, attaining the no-outage promise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信