基于多尺度CSPN和双重注意的行人检测研究

Xinxin Huang, Zhenyu Yin, Chao Fan
{"title":"基于多尺度CSPN和双重注意的行人检测研究","authors":"Xinxin Huang, Zhenyu Yin, Chao Fan","doi":"10.1109/ICTech55460.2022.00096","DOIUrl":null,"url":null,"abstract":"Pedestrian detection is a significant research direction in the computer vision, but the detection performance of existing pedestrian detection algorithms is inadequate. Therefore, this article proposes a novel algorithm to improve the anchor-free pedestrian detection algorithm. First, the multi-scale CSPN module is used to deepen the network depth, further extract semantic information on multiple scales, and improve detection performance. Moreover, the dual attention module based on feature fusion is used to effectively fuse features of different scales, assigning new weights to the fused features in the two dimensions of space and channel. Experiments show our method reduces MR−2 by 0.10%, 2.60% and 0.98% on the Reasonable, Heavy Occlusion and ALL of the Caltech pedestrian dataset, which is better than the existing algorithms.","PeriodicalId":290836,"journal":{"name":"2022 11th International Conference of Information and Communication Technology (ICTech))","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Better Pedestrian Detection Using Multi-Scale CSPN and Dual Attention\",\"authors\":\"Xinxin Huang, Zhenyu Yin, Chao Fan\",\"doi\":\"10.1109/ICTech55460.2022.00096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian detection is a significant research direction in the computer vision, but the detection performance of existing pedestrian detection algorithms is inadequate. Therefore, this article proposes a novel algorithm to improve the anchor-free pedestrian detection algorithm. First, the multi-scale CSPN module is used to deepen the network depth, further extract semantic information on multiple scales, and improve detection performance. Moreover, the dual attention module based on feature fusion is used to effectively fuse features of different scales, assigning new weights to the fused features in the two dimensions of space and channel. Experiments show our method reduces MR−2 by 0.10%, 2.60% and 0.98% on the Reasonable, Heavy Occlusion and ALL of the Caltech pedestrian dataset, which is better than the existing algorithms.\",\"PeriodicalId\":290836,\"journal\":{\"name\":\"2022 11th International Conference of Information and Communication Technology (ICTech))\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference of Information and Communication Technology (ICTech))\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTech55460.2022.00096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference of Information and Communication Technology (ICTech))","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTech55460.2022.00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

行人检测是计算机视觉中一个重要的研究方向,但现有的行人检测算法检测性能不足。因此,本文提出了一种新的算法来改进无锚行人检测算法。首先,利用多尺度CSPN模块加深网络深度,在多尺度上进一步提取语义信息,提高检测性能;此外,采用基于特征融合的双关注模块对不同尺度的特征进行有效融合,在空间和通道两个维度上对融合后的特征赋予新的权重。实验表明,该方法在Caltech行人数据集的Reasonable、Heavy Occlusion和ALL上分别降低了0.10%、2.60%和0.98%的MR - 2,优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Better Pedestrian Detection Using Multi-Scale CSPN and Dual Attention
Pedestrian detection is a significant research direction in the computer vision, but the detection performance of existing pedestrian detection algorithms is inadequate. Therefore, this article proposes a novel algorithm to improve the anchor-free pedestrian detection algorithm. First, the multi-scale CSPN module is used to deepen the network depth, further extract semantic information on multiple scales, and improve detection performance. Moreover, the dual attention module based on feature fusion is used to effectively fuse features of different scales, assigning new weights to the fused features in the two dimensions of space and channel. Experiments show our method reduces MR−2 by 0.10%, 2.60% and 0.98% on the Reasonable, Heavy Occlusion and ALL of the Caltech pedestrian dataset, which is better than the existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信